692 research outputs found

    On cosmic rotation

    Get PDF
    We overview our recent studies of cosmological models with expansion and global rotation. Problems of the early rotating models are discussed, and the class of new viable cosmologies is described in detail. Particular attention is paid to the observational effects of the cosmic rotation.Comment: 22 pages, Revte

    Comparative experimental study of local mixing of active and passive scalars in turbulent thermal convection

    Full text link
    We investigate experimentally the statistical properties of active and passive scalar fields in turbulent Rayleigh-B\'{e}nard convection in water, at Ra1010Ra\sim10^{10}. Both the local concentration of fluorescence dye and the local temperature are measured near the sidewall of a rectangular cell. It is found that, although they are advected by the same turbulent flow, the two scalars distribute differently. This difference is twofold, i.e. both the quantities themselves and their small-scale increments have different distributions. Our results show that there is a certain buoyant scale based on time domain, i.e. the Bolgiano time scale tBt_B, above which buoyancy effects are significant. Above tBt_B, temperature is active and is found to be more intermittent than concentration, which is passive. This suggests that the active scalar possesses a higher level of intermittency in turbulent thermal convection. It is further found that the mixing of both scalar fields are isotropic for scales larger than tBt_B even though buoyancy acts on the fluid in the vertical direction. Below tBt_B, temperature is passive and is found to be more anisotropic than concentration. But this higher degree of anisotropy is attributed to the higher diffusivity of temperature over that of concentration. From the simultaneous measurements of temperature and concentration, it is shown that two scalars have similar autocorrelation functions and there is a strong and positive correlation between them.Comment: 13 pages and 12 figure

    The Kelvin-wave cascade in the vortex filament model

    Get PDF
    The energy transfer mechanism in zero temperature superfluid turbulence of helium-4 is still a widely debated topic. Currently, the main hypothesis is that weakly nonlinear interacting Kelvin waves transfer energy to sufficiently small scales such that energy is dissipated as heat via phonon excitations. Theoretically, there are at least two proposed theories for Kelvin-wave interactions. We perform the most comprehensive numerical simulation of weakly nonlinear interacting Kelvin-waves to date and show, using a specially designed numerical algorithm incorporating the full Biot-Savart equation, that our results are consistent with nonlocal six-wave Kelvin wave interactions as proposed by L'vov and Nazarenko.Comment: 6 pages, 6 figure

    An assessment of Evans' unified field theory II

    Get PDF
    Evans developed a classical unified field theory of gravitation and electromagnetism on the background of a spacetime obeying a Riemann-Cartan geometry. In an accompanying paper I, we analyzed this theory and summarized it in nine equations. We now propose a variational principle for Evans' theory and show that it yields two field equations. The second field equation is algebraic in the torsion and we can resolve it with respect to the torsion. It turns out that for all physical cases the torsion vanishes and the first field equation, together with Evans' unified field theory, collapses to an ordinary Einstein equation.Comment: 11 pages of late

    A stochastic model of cascades in 2D turbulence

    Full text link
    The dual cascade of energy and enstrophy in 2D turbulence cannot easily be understood in terms of an analog to the Richardson-Kolmogorov scenario describing the energy cascade in 3D turbulence. The coherent up- and downscale fluxes points to non-locality of interactions in spectral space, and thus the specific spatial structure of the flow could be important. Shell models, which lack spacial structure and have only local interactions in spectral space, indeed fail in reproducing the correct scaling for the inverse cascade of energy. In order to exclude the possibility that non-locality of interactions in spectral space is crucial for the dual cascade, we introduce a stochastic spectral model of the cascades which is local in spectral space and which shows the correct scaling for both the direct enstrophy - and the inverse energy cascade.Comment: 4 pages, 3 figure

    Kraichnan model of passive scalar advection

    Full text link
    A simple model of a passive scalar quantity advected by a Gaussian non-solenoidal ("compressible") velocity field is considered. Large order asymptotes of quantum-field expansions are investigated by instanton approach. The existence of finite convergence radius of the series is proved, a position and a type of the corresponding singularity of the series in the regularization parameter are determined. Anomalous exponents of the main contributions to the structural functions are resummed using new information about the series convergence and two known orders of the expansion.Comment: 21 page

    From non-Brownian Functionals to a Fractional Schr\"odinger Equation

    Full text link
    We derive backward and forward fractional Schr\"odinger type of equations for the distribution of functionals of the path of a particle undergoing anomalous diffusion. Fractional substantial derivatives introduced by Friedrich and co-workers [PRL {\bf 96}, 230601 (2006)] provide the correct fractional framework for the problem at hand. In the limit of normal diffusion we recover the Feynman-Kac treatment of Brownian functionals. For applications, we calculate the distribution of occupation times in half space and show how statistics of anomalous functionals is related to weak ergodicity breaking.Comment: 5 page
    corecore