193 research outputs found

    Optimized coupling of cold atoms into a fiber using a blue-detuned hollow-beam funnel

    Full text link
    We theoretically investigate the process of coupling cold atoms into the core of a hollow-core photonic-crystal optical fiber using a blue-detuned Laguerre-Gaussian beam. In contrast to the use of a red-detuned Gaussian beam to couple the atoms, the blue-detuned hollow-beam can confine cold atoms to the darkest regions of the beam thereby minimizing shifts in the internal states and making the guide highly robust to heating effects. This single optical beam is used as both a funnel and guide to maximize the number of atoms into the fiber. In the proposed experiment, Rb atoms are loaded into a magneto-optical trap (MOT) above a vertically-oriented optical fiber. We observe a gravito-optical trapping effect for atoms with high orbital momentum around the trap axis, which prevents atoms from coupling to the fiber: these atoms lack the kinetic energy to escape the potential and are thus trapped in the laser funnel indefinitely. We find that by reducing the dipolar force to the point at which the trapping effect just vanishes, it is possible to optimize the coupling of atoms into the fiber. Our simulations predict that by using a low-power (2.5 mW) and far-detuned (300 GHz) Laguerre-Gaussian beam with a 20-{\mu}m radius core hollow-fiber it is possible to couple 11% of the atoms from a MOT 9 mm away from the fiber. When MOT is positioned further away, coupling efficiencies over 50% can be achieved with larger core fibers.Comment: 11 pages, 12 figures, 1 tabl

    Quantitative atomic spectroscopy for primary thermometry

    Get PDF
    Quantitative spectroscopy has been used to measure accurately the Doppler-broadening of atomic transitions in 85^{85}Rb vapor. By using a conventional platinum resistance thermometer and the Doppler thermometry technique, we were able to determine kBk_B with a relative uncertainty of 4.1×10−44.1\times 10^{-4}, and with a deviation of 2.7×10−42.7\times 10^{-4} from the expected value. Our experiment, using an effusive vapour, departs significantly from other Doppler-broadened thermometry (DBT) techniques, which rely on weakly absorbing molecules in a diffusive regime. In these circumstances, very different systematic effects such as magnetic sensitivity and optical pumping are dominant. Using the model developed recently by Stace and Luiten, we estimate the perturbation due to optical pumping of the measured kBk_B value was less than 4×10−64\times 10^{-6}. The effects of optical pumping on atomic and molecular DBT experiments is mapped over a wide range of beam size and saturation intensity, indicating possible avenues for improvement. We also compare the line-broadening mechanisms, windows of operation and detection limits of some recent DBT experiments

    Insulin-like growth factor II receptors in human brain and their absence in astrogliotic plaques in multiple sclerosis

    Get PDF
    Insulin-like growth factor (IGF) II receptors were studied in human adult brain by using autoradiography with [(125)I]IGF-II. Receptors were found to be widely distributed throughout all neuronal regions. The highest densities were found in plexus choroideus, granular layer of the cerebellar cortex, gyrus dendatus and pyramidal layer of the hippocampus, striatum, and cerebral cortex. White matter was devoid of IGF-II receptors. We also examined [(125)I]IGF-II binding in six plaques of multiple sclerosis, which were characterized by a dense network of astrocytes. Ne were unable to detect IGF-II receptors in any of the astrogliotic plaques, suggesting that IGF-II receptors in human brain are not involved in astrogliosis. The regional variations in neuronal distribution of IGF-II receptors suggest involvement of IGF-II in functions associated with specific neuronal pathways. (C) 2000 Elsevier Science B.V. All rights reserved

    Ultrafast Resonant Polarization Interferometry: Towards the First Direct Detection of Vacuum Polarization

    Full text link
    Vacuum polarization, an effect predicted nearly 70 years ago, is still yet to be directly detected despite significant experimental effort. Previous attempts have made use of large liquid-helium cooled electromagnets which inadvertently generate spurious signals that mask the desired signal. We present a novel approach for the ultra-sensitive detection of optical birefringence that can be usefully applied to a laboratory detection of vacuum polarization. The new technique has a predicted birefringence measurement sensitivity of Δn∼1020\Delta n \sim 10^{20} in a 1 second measurement. When combined with the extreme polarizing fields achievable in this design we predict that a vacuum polarization signal will be seen in a measurement of just a few days in duration.Comment: 9 pages, 2 figures. submitted to PR

    Colloquium: Comparison of Astrophysical and Terrestrial Frequency Standards

    Full text link
    We have re-analyzed the stability of pulse arrival times from pulsars and white dwarfs using several analysis tools for measuring the noise characteristics of sampled time and frequency data. We show that the best terrestrial artificial clocks substantially exceed the performance of astronomical sources as time-keepers in terms of accuracy (as defined by cesium primary frequency standards) and stability. This superiority in stability can be directly demonstrated over time periods up to two years, where there is high quality data for both. Beyond 2 years there is a deficiency of data for clock/clock comparisons and both terrestrial and astronomical clocks show equal performance being equally limited by the quality of the reference timescales used to make the comparisons. Nonetheless, we show that detailed accuracy evaluations of modern terrestrial clocks imply that these new clocks are likely to have a stability better than any astronomical source up to comparison times of at least hundreds of years. This article is intended to provide a correct appreciation of the relative merits of natural and artificial clocks. The use of natural clocks as tests of physics under the most extreme conditions is entirely appropriate; however, the contention that these natural clocks, particularly white dwarfs, can compete as timekeepers against devices constructed by mankind is shown to be doubtful.Comment: 9 pages, 2 figures; presented at the International Frequency Control Symposium, Newport Beach, Calif., June, 2010; presented at Pulsar Conference 2010, October 12th, Sardinia; accepted 13th September 2010 for publication in Reviews of Modern Physic

    Theory of spectroscopy in an optically pumped effusive vapor

    Get PDF
    We present a theoretical framework for studying spatially dependent absorption in a thermal vapor of multilevel atoms, of arbitrary optical thickness. The atomic state dynamics, governed by a standard atom-optical master equation, are self-consistently coupled to the axial evolution of the probe beam intensity and the effusive gas dynamics. We derive steady-state equations for the spatially varying distributions of atomic populations and the probe beam intensity. From the latter, absorption coefficients in both the saturated and unsaturated regimes can be calculated. We present solutions to the resulting equations at various levels of approximation, including an example of the full numerical solution of a saturated, optically thick vapor of three-level atoms, demonstrating a breakdown of Beer's law, among other measurable effects. © 2010 The American Physical Society

    Tests of relativity using a microwave resonator

    Get PDF
    The frequencies of a cryogenic sapphire oscillator and a hydrogen maser are compared to set new constraints on a possible violation of Lorentz invariance. We determine the variation of the oscillator frequency as a function of its orientation (Michelson-Morley test) and of its velocity (Kennedy-Thorndike test) with respect to a preferred frame candidate. We constrain the corresponding parameters of the Mansouri and Sexl test theory to δ−β+1/2=(1.5±4.2)×10−9\delta - \beta + 1/2 = (1.5\pm 4.2) \times 10^{-9} and β−α−1=(−3.1±6.9)×10−7\beta - \alpha - 1 = (-3.1\pm 6.9) \times 10^{-7} which is equivalent to the best previous result for the former and represents a 30 fold improvement for the latter.Comment: 8 pages, 2 figures, submitted to Physical Review Letters (October 3, 2002

    Wavefront Curvature in Optical Atomic Beam Clocks

    Full text link
    Atomic clocks provide a reproducible basis for our understanding of time and frequency. Recent demonstrations of compact optical clocks, employing thermal atomic beams, have achieved short-term fractional frequency instabilities in the 10−1610^{-16}, competitive with the best international frequency standards available. However, a serious challenge inherent in compact clocks is the necessarily smaller optical beams, which results in rapid variation in interrogating wavefronts. This can cause inhomogeneous excitation of the thermal beam leading to long term drifts in the output frequency. Here we develop a model for Ramsey-Bord\'e interferometery using optical fields with curved wavefronts and simulate the 40^{40}Ca beam clock experiment described in [Olson et al., Phys. Rev. Lett. 123, 073202 (2019)]. Olson et al.'s results had shown surprising and unexplained behaviour in the response of the atoms in the interrogation. Our model predicts signals consistent with experimental data and can account for the significant sensitivity to laser geometry that was reported. We find the signal-to-noise ratio is maximised when the laser is uncollimated at the interrogation zones to minimise inhomogeneity, and also identify an optimal waist size determined by both laser inhomogeneity and the velocity distribution of the atomic beam. We investigate the shifts and stability of the clock frequency, showing that the Gouy phase is the primary source of frequency variations arising from laser geometry.Comment: 13 pages, 7 figure
    • …
    corecore