742 research outputs found
Gravitational Waves from Core Collapse Supernovae
We present the gravitational wave signatures for a suite of axisymmetric core
collapse supernova models with progenitors masses between 12 and 25 solar
masses. These models are distinguished by the fact they explode and contain
essential physics (in particular, multi-frequency neutrino transport and
general relativity) needed for a more realistic description. Thus, we are able
to compute complete waveforms (i.e., through explosion) based on
non-parameterized, first-principles models. This is essential if the waveform
amplitudes and time scales are to be computed more precisely. Fourier
decomposition shows that the gravitational wave signals we predict should be
observable by AdvLIGO across the range of progenitors considered here. The
fundamental limitation of these models is in their imposition of axisymmetry.
Further progress will require counterpart three-dimensional models.Comment: 10 pages, 5 figure
Searching for prompt signatures of nearby core-collapse supernovae by a joint analysis of neutrino and gravitational-wave data
We discuss the science motivations and prospects for a joint analysis of
gravitational-wave (GW) and low-energy neutrino data to search for prompt
signals from nearby supernovae (SNe). Both gravitational-wave and low-energy
neutrinos are expected to be produced in the innermost region of a
core-collapse supernova, and a search for coincident signals would probe the
processes which power a supernova explosion. It is estimated that the current
generation of neutrino and gravitational-wave detectors would be sensitive to
Galactic core-collapse supernovae, and would also be able to detect
electromagnetically dark SNe. A joint GW-neutrino search would enable
improvements to searches by way of lower detection thresholds, larger distance
range, better live-time coverage by a network of GW and neutrino detectors, and
increased significance of candidate detections. A close collaboration between
the GW and neutrino communities for such a search will thus go far toward
realizing a much sought-after astrophysics goal of detecting the next nearby
supernova.Comment: 10 pages, 3 figures. To appear in Class. Quantum Gra
Gravitational Waves from Gravitational Collapse
Gravitational wave emission from the gravitational collapse of massive stars
has been studied for more than three decades. Current state of the art
numerical investigations of collapse include those that use progenitors with
realistic angular momentum profiles, properly treat microphysics issues,
account for general relativity, and examine non--axisymmetric effects in three
dimensions. Such simulations predict that gravitational waves from various
phenomena associated with gravitational collapse could be detectable with
advanced ground--based and future space--based interferometric observatories.Comment: 68 pages including 13 figures; revised version accepted for
publication in Living Reviews in Relativity (http://www.livingreviews.org
Damping of supernova neutrino transitions in stochastic shock-wave density profiles
Supernova neutrino flavor transitions during the shock wave propagation are
known to encode relevant information not only about the matter density profile
but also about unknown neutrino properties, such as the mass hierarchy (normal
or inverted) and the mixing angle theta_13. While previous studies have
focussed on "deterministic" density profiles, we investigate the effect of
possible stochastic matter density fluctuations in the wake of supernova shock
waves. In particular, we study the impact of small-scale fluctuations on the
electron (anti)neutrino survival probability, and on the observable spectra of
inverse-beta-decay events in future water-Cherenkov detectors. We find that
such fluctuations, even with relatively small amplitudes, can have significant
damping effects on the flavor transition pattern, and can partly erase the
shock-wave imprint on the observable time spectra, especially for
sin^2(theta_13) > O(10^-3).Comment: v2 (23 pages, including 6 eps figures). Typos removed, references
updated, matches the published versio
Menus for Feeding Black Holes
Black holes are the ultimate prisons of the Universe, regions of spacetime
where the enormous gravity prohibits matter or even light to escape to
infinity. Yet, matter falling toward the black holes may shine spectacularly,
generating the strongest source of radiation. These sources provide us with
astrophysical laboratories of extreme physical conditions that cannot be
realized on Earth. This chapter offers a review of the basic menus for feeding
matter onto black holes and discusses their observational implications.Comment: 27 pages. Accepted for publication in Space Science Reviews. Also to
appear in hard cover in the Space Sciences Series of ISSI "The Physics of
Accretion onto Black Holes" (Springer Publisher
Multimessenger astronomy with the Einstein Telescope
Gravitational waves (GWs) are expected to play a crucial role in the
development of multimessenger astrophysics. The combination of GW observations
with other astrophysical triggers, such as from gamma-ray and X-ray satellites,
optical/radio telescopes, and neutrino detectors allows us to decipher science
that would otherwise be inaccessible. In this paper, we provide a broad review
from the multimessenger perspective of the science reach offered by the third
generation interferometric GW detectors and by the Einstein Telescope (ET) in
particular. We focus on cosmic transients, and base our estimates on the
results obtained by ET's predecessors GEO, LIGO, and Virgo.Comment: 26 pages. 3 figures. Special issue of GRG on the Einstein Telescope.
Minor corrections include
- …