137 research outputs found
Anomalous density of states in a metallic film in proximity with a superconductor
We investigated the local electronic density of states in
superconductor-normal metal (Nb-Au) bilayers using a very low temperature (60
mK) STM. High resolution tunneling spectra measured on the normal metal (Au)
surface show a clear proximity effect with an energy gap of reduced amplitude
compared to the bulk superconductor (Nb) gap. Within this mini-gap, the density
of states does not reach zero and shows clear sub-gap features. We show that
the experimental spectra cannot be described with the well-established Usadel
equations from the quasi-classical theory.Comment: 4 pages, 5 figure
Room temperature spin filtering in epitaxial cobalt-ferrite tunnel barriers
We report direct experimental evidence of room temperature spin filtering in
magnetic tunnel junctions (MTJs) containing CoFe2O4 tunnel barriers via
tunneling magnetoresistance (TMR) measurements.
Pt(111)/CoFe2O4(111)/gamma-Al2O3(111)/Co(0001) fully epitaxial MTJs were grown
in order to obtain a high quality system, capable of functioning at room
temperature. Spin polarized transport measurements reveal significant TMR
values of -18% at 2 K and -3% at 290 K. In addition, the TMR ratio follows a
unique bias voltage dependence that has been theoretically predicted to be the
signature of spin filtering in MTJs containing magnetic barriers. CoFe2O4
tunnel barriers therefore provide a model system to investigate spin filtering
in a wide range of temperatures.Comment: 6 pages, 3 figure
Nano-yarn carbon nanotube fiber based enzymatic glucose biosensor
This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2010 IOP Publishing Ltd.A novel brush-like electrode based on carbon nanotube (CNT) nano-yarn fiber has been designed for electrochemical biosensor applications and its efficacy as an enzymatic glucose biosensor demonstrated. The CNT nano-yarn fiber was spun directly from a chemical-vapor-deposition (CVD) gas flow reaction using a mixture of ethanol and acetone as the carbon source and an iron nano-catalyst. The fiber, 28 µm in diameter, was made of bundles of double walled CNTs (DWNTs) concentrically compacted into multiple layers forming a nano-porous network structure. Cyclic voltammetry study revealed a superior electrocatalytic activity for CNT fiber compared to the traditional Pt–Ir coil electrode. The electrode end tip of the CNT fiber was freeze-fractured to obtain a unique brush-like nano-structure resembling a scale-down electrical 'flex', where glucose oxidase (GOx) enzyme was immobilized using glutaraldehyde crosslinking in the presence of bovine serum albumin (BSA). An outer epoxy-polyurethane (EPU) layer was used as semi-permeable membrane. The sensor function was tested against a standard reference electrode. The sensitivities, linear detection range and linearity for detecting glucose for the miniature CNT fiber electrode were better than that reported for a Pt–Ir coil electrode. Thermal annealing of the CNT fiber at 250 °C for 30 min prior to fabrication of the sensor resulted in a 7.5 fold increase in glucose sensitivity. The as-spun CNT fiber based glucose biosensor was shown to be stable for up to 70 days. In addition, gold coating of the electrode connecting end of the CNT fiber resulted in extending the glucose detection limit to 25 µM. To conclude, superior efficiency of CNT fiber for glucose biosensing was demonstrated compared to a traditional Pt–Ir sensor.Brunel University, the Royal Society and the National Institute of Health
Decrease of cocaine, but not heroin, self-administration and relapse by the tyrosine kinase inhibitor masitinib in male Sprague Dawley rats.
RATIONALE: Accumulating evidence shows that cocaine, and also heroin, influence several tyrosine kinases, expressed in neurons and in non-neuronal populations such as microglia, astrocytes and mast-cells. Drug-induced activation of mast cells both triggers inflammatory processes in the brain mediated by the glial cells they activate, and facilitates histamine release which may directly influence the dopamine system. Thus, by triggering the activation and degranulation of mast cells dependent on the tyrosine kinase c-kit and Fyn, the latter being also involved in NMDA-dependent synaptic plasticity, cocaine and heroin may indirectly influence the neural mechanisms that mediate their reinforcing properties. Masitinib, a novel tyrosine kinase inhibitor with high selectivity for c-Kit, Fyn and Lyn, may alter the aberrant consequences of the activation of these tyrosine kinases by cocaine and heroin. OBJECTIVE: We investigated in rats the effect of a chronic oral treatment with masitinib (20Â mg/kg) on the reinforcing and motivational properties of self-administered cocaine (250Â ÎĽg/infusion) and heroin (40Â ÎĽg/infusion). METHODS: Three different cohorts of rats were trained instrumentally to respond for cocaine, heroin or food under continuous reinforcement. In each group, we assessed the influence of chronic daily treatment with masitinib on the maintenance of instrumental responding and intake and the motivation for the reinforcer. Thus, masitinib and vehicle-treated rats were challenged to adapt to high behavioural demand, to respond under a progressive ratio schedule of reinforcement and to reinstate instrumental responding after extinction and/or abstinence. RESULTS: Masitinib selectively decreased cocaine intake, the motivation for cocaine and the subsequent propensity to respond for cocaine under extinction, while having no effect on instrumental responding for heroin or food. CONCLUSION: The present findings suggest masitinib, a drug with proven efficacy in CNS disorders, could represent a novel treatment for cocaine addiction provided its influence on the reinforcing and incentive properties of the drug is confirmed
Inverse proximity effect in superconductors near ferromagnetic material
We study the electronic density of states in a mesoscopic superconductor near
a transparent interface with a ferromagnetic metal. In our tunnel spectroscopy
experiment, a substantial density of states is observed at sub-gap energies
close to a ferromagnet. We compare our data with detailed calculations based on
the Usadel equation, where the effect of the ferromagnet is treated as an
effective boundary condition. We achieve an excellent agreement with theory
when non-ideal quality of the interface is taken into account.Comment: revised, 7 pages, 3 figure
Density of states in SF bilayers with arbitrary strength of magnetic scattering
We developed the self-consistent method for the calculation of the density of
states in the SF bilayers. It based on the quasi-classical Usadel
equations and takes into account the suppression of superconductivity in the S
layer due to the proximity effect with the F metal, as well as existing
mechanisms of the spin dependent electron scattering. We demonstrate that the
increase of the spin orbit or spin flip electron scattering rates results in
completely different transformations of at the free F layer
interface. The developed formalism has been applied for the interpretation of
the available experimental data.Comment: 5 pages, 8 figure
(ENGLISH): COVID-19 AND THE GLOBAL EDUCATION EMERGENCY: PLANNING SYSTEMS FOR RECOVERY AND RESILIENCE
Determination of the cation site distribution of the spinel in multiferroic CoFe2O4 / BaTiO3 layers by X-ray photoelectron spectroscopy
International audienceThe properties of CoFe2O4/BaTiO3 artificial multiferroic multilayers strongly depend on the crystalline structure, the stoichiometry and the cation distribution between octahedral (Oh) and tetrahedral (Td) sites (inversion factor). In the present study, we have investigated epitaxial CoFe2O4 layers grown on BaTiO3, with different Co/Fe ratios. We determined the cation distribution in our samples by X-ray magnetic circular dichroism (XMCD), a well accepted method to do so, and by X-ray photoelectron spectroscopy (XPS), using a fitting method based on physical considerations. We observed that our XPS approach converged on results consistent with XMCD measurements made on the same samples. Thus, within a careful decomposition based on individual chemical environments it is shown that XPS is fully able to determine the actual inversion factor
Absolute spin-valve effect with superconducting proximity structures
We investigate spin dependent transport in hybrid
superconductor(S)--normal-metal(N)--ferromagnet(F) structures under conditions
of proximity effect. We demonstrate the feasibility of the absolute spin-valve
effect for a certain interval of voltages in a system consisting of two coupled
tri-layer structures. Our results are also valid for non-collinear magnetic
configurations of the ferromagnets.Comment: 1 TEX file, 2 Postscript files. Accepted for publication in Physical
Review Letter
Mesoscopic proximity effect in double barrier Superconductor/Normal Metal junctions
We report transport measurements down to T=60mK of SININ and SNIN structures
in the diffusive limit. We fabricated Al-AlOx/Cu/AlOx/Cu (SININ) and
Al/Cu/AlOx/Cu (SNIN) vertical junctions. For the first time, a zero bias
anomaly was observed in a metallic SININ structure. We attribute this peak of
conductance to coherent multi-reflections of electrons between the two tunnel
barriers. This conductance maximum is quantitatively fitted by the relevant
theory of mesoscopic SININ structures. When the barrier at the SN interface is
removed (SNIN structure), we observe a peak of conductance at finite voltage
accompagnied by an excess of sub-gap conductance.Comment: 4 pages, 4 figures, editorially approved for publication in Phys.
Rev. B Rapid Com
- …