129 research outputs found

    Casimir force measurements in Au-Au and Au-Si cavities at low temperature

    Full text link
    We report on measurements of the Casimir force in a sphere-plane geometry using a cryogenic force microscope to move the force probe in situ over different materials. We show how the electrostatic environment of the interacting surfaces plays an important role in weak force measurements and can overcome the Casimir force at large distance. After minimizing these parasitic forces, we measure the Casimir force between a gold-coated sphere and either a gold-coated or a heavily doped silicon surface in the 100-400 nm distance range. We compare the experimental data with theoretical predictions and discuss the consequence of a systematic error in the scanner calibration on the agreement between experiment and theory. The relative force over the two surfaces compares favorably with theory at short distance, showing that this Casimir force experiment is sensitive to the dielectric properties of the interacting surfaces.Comment: accepted for publication in Physical Review

    Evaluation of two thermal neutron detection units consisting of ZnS/6{}^6LiF scintillating layers with embedded WLS fibers read out with a SiPM

    Full text link
    Two single channel detection units for thermal neutron detection are investigated in a neutron beam. They consist of two ZnS/6{}^6LiF scintillating layers sandwiching an array of WLS fibers. The pattern of this units can be repeated laterally and vertically in order to build up a one dimensional position sensitive multi-channel detector with the needed sensitive surface and with the required neutron absorption probability. The originality of this work arises from the fact that the WLS fibers are read out with SiPMs instead of the traditionally used PMTs or MaPMTs. The signal processing system is based on a photon counting approach. For SiPMs with a dark count rate as high as 0.7 MHz, a trigger efficiency of 80% is achieved together with a system background rate lower than 103{10}^{-3} Hz and a dead time of 30 μ\mus. No change of performance is observed for neutron count rates of up to 3.6 kHz.Comment: Submitted to Nuclear Instruments and Methods

    Negative Backaction Noise in Interferometric Detection of a Microlever

    Full text link
    Interferometric detection of mirror displacements is intrinsically limited by laser shot noise. In practice, however, it is often limited by thermal noise. Here we report on an experiment performed at the liquid helium temperature to overcome the thermal noise limitation and investigate the effect of classical laser noise on a microlever that forms a Fabry-Perot cavity with an optical fiber. The spectral noise densities show a region of negative contribution of the backaction noise close to the resonance frequency. We interpret this noise reduction as a coherent coupling of the microlever to the laser intensity noise. This optomechanical effect could be used to improve the detection sensitivity as discussed in proposals going beyond the Standard Quantum Limit.Comment: accepted for publication in Physical Review Letter

    Application of third generation synchrotron source to studies of noncrystalline materials : In-Se amorphous films

    Get PDF
    The local structure of vacuum evaporated In-Se amorphous films, containing 50, 60, and 66 at .% Se, was studied using differential anomalous X -ray scattering and extended X -ray absorption fine structure. Both intensity and absorption spectra were measured in the vicinity of the absorption K -edge of Se. The differential anomalous X -ray scattering data were converted to real space by the inverse Fourier transform yielding the differential radial distribution functions. The obtained results provide evidence for the presence of Se-In spatial correlations for In5 0 Se50 and Se-In and Se-Se correlations for In40 Se60 and In34 Se66 within the first coordination sphere
    corecore