1,397 research outputs found

    In Search for Extraterrestrial High Energy Neutrinos

    Full text link
    In this paper we review the search for astrophysical neutrinos. We begin by summarizing the various theoretical predictions which correlate the expected neutrino flux with data from other messengers, specifically gammas and ultra-high energy cosmic rays. We then review the status and results of neutrino telescopes in operation and decommissioned, the methods used for data analysis and background discrimination. Particular attention is devoted to the challenge enforced by the highly uncertain atmospheric muon and neutrino backgrounds in relation to searches of diffuse neutrino fluxes. Next, we examine the impact of existing limits on neutrino fluxes on studies of the chemical composition of cosmic rays. After that, we show that not only do neutrinos have the potential to discover astrophysical sources, but the huge statistics of atmospheric muons can be a powerful tool as well. We end by discussing the prospects for indirect detection of dark matter with neutrino telescopes.Comment: Solicited Review Article submitted to Annual Review of Nuclear and Particle Science; 50 pages and 15 figures; the review is limited to 150 references, so many of them have been grouped. See http://www.icecube.wisc.edu/~tmontaruli/review for errata and other feature

    Neutrino signal from extended Galactic sources in IceCube

    Full text link
    We explore the detectability of the neutrino flux from the entire Galactic Plane or from a part of it with IceCube. We calculate the normalization and the spectral index of the neutrino power law spectrum from different regions of the Galactic plane, based on the observed spectral characteristics of the pion decay gamma-ray diffuse emission observed by the Fermi/LAT telescope in the energy band above 100 GeV. We compare the neutrino flux calculated in this way with the sensitivity of IceCube for the detection of extended sources. Assuming a binned extended source analysis method, we find that the only possible evidence for neutrino emission for sources located in the Northern hemisphere is from the Cygnus region after 20 years of exposure. For other parts of the Galactic Plane even a 20 years exposure with IceCube is not sufficient for the detection. Taking into account marginal significance of the detectable source in the Cygnus region, we find a precise position and size of the source region which optimizes the signal-to-noise ratio for neutrinos. We also calculate the low-energy threshold above which the neutrino signal could be detected with the highest signal-to-noise ratio. This calculation of precise source position, size and energy range, based on the gamma-ray data, could be used to remove the 'trial factor' in the analysis of the real neutrino data of IceCube. We notice that the diffuse neutrino emission from the inner Galactic Plane in the Southern Hemisphere is much brighter. A neutrino detector with characteristics equivalent to IceCube, but placed at the Northern Hemisphere (such as KM3NeT), would detect several isolated neutrino sources in the Galactic Plane within just 5 years exposure at 5{\sigma} level. These isolated sources of ~TeV neutrinos would unambiguously localize sources of cosmic rays which operated over the last 10 thousand years in the Galaxy.[abridged]Comment: submitted to A&

    An exploration of hadronic interactions in blazars using IceCube

    Full text link
    Context: Hadronic models, involving matter (proton or nuclei) acceleration in blazar jets, imply high energy photon and neutrino emissions due to interactions of high-energy protons with matter and/or radiation in the source environment. Aims: This paper shows that the sensitivity of the IceCube neutrino telescope in its 40-string configuration (IC-40) is already at the level of constraining the parameter space of purely hadronic scenarios of activity of blazars. Methods: Assuming that the entire source power originates from hadronic interactions, and assuming that the models describe the data, we estimate the expected neutrino flux from blazars based on the observed gamma-ray flux by Fermi, simultaneously with IC-40 observations. We consider two cases separately to keep the number of constrainable parameters at an acceptable level: proton-proton or proton-gamma interactions are dominant. Comparing the IC-40 sensitivity to the neutrino flux expected from some of the brightest blazars, we constrain model parameters characterizing the parent high-energy proton spectrum. Results: We find that when pp interactions dominate, some constraints on the primary proton spectrum can be imposed. For instance, for the tightest constrained source 3C 454.3, the very high energy part of the spectra of blazars is constrained to be harder than E^-2 with cut-off energies in the range of Ecut >10^18 eV. When interactions of high-energy protons on soft photon fields dominate, we can find similarly tight constraints on the proton spectrum parameters. [abridged]Comment: accepted for publication in A&

    High energy extension of the FLUKA atmospheric neutrino flux

    Full text link
    The atmospheric neutrino flux calculated with FLUKA was originally limited to 100-200 GeV for statistical reasons. In order to make it available for the analysis of high energy events, like upward through-going muons detected by neutrino telescopes, we have extended the calculation so to provide a reliable neutrino yield per primary nucleon up to about 10**6 GeV/nucleon, as far as the interaction model is concerned. We point out that the primary flux model above 100 GeV/nucleon still contributes with an important systematic error to the neutrino flux.Comment: Extended version (10 pages) of the contribution to ICRC 2003, with the addition of flux table

    Air Shower Measurements in the Primary Energy Range from PeV to EeV

    Full text link
    Recent results of advanced experiments with sophisticated measurements of cosmic rays in the energy range of the so called knee at a few PeV indicate a distinct knee in the energy spectra of light primary cosmic rays and an increasing dominance of heavy ones towards higher energies. This leads to the expectation of knee-like features of the heavy primaries at around 100 PeV. To investigate in detail this energy region several new experiments are or will be devised.Comment: 4 pages; submitted to Proceedings of 2nd Workshop on TeV Astrophysics, Aug 28-31, 2006, Madison, W

    Comparison of the FLUKA calculations with CAPRICE94 data on muons in atmosphere

    Get PDF
    In order to benchmark the 3-dimensional calculation of the atmospheric neutrino flux based on the FLUKA Monte Carlo code, muon fluxes in the atmosphere have been computed and compared with data taken by the CAPRICE94 experiment at ground level and at different altitudes in the atmosphere. For this purpose only two additions have been introduced with respect to the neutrino flux calculation: the specific solar modulation corresponding to the period of data taking and the bending of charged particles in the atmosphere. Results are in good agreement with experimental data, although improvements in the model are possible. At this level, however, it is not possible to disentangle the interplay between the primary flux and the interaction model.In order to benchmark the 3-dimensional calculation of the atmospheric neutrino flux based on the FLUKA Monte Carlo code, muon fluxes in the atmosphere have been computed and compared with data taken by the CAPRICE94 experiment at ground level and at different altitudes in the atmosphere. For this purpose only two additions have been introduced with respect to the neutrino flux calculation: the specific solar modulation corresponding to the period of data taking and the bending of charged particles in the atmosphere. Results are in good agreement with experimental data, although improvements in the model are possible. At this level, however, it is not possible to disentangle the interplay between the primary flux and the interaction model.In order to benchmark the 3-dimensional calculation of the atmospheric neutrino flux based on the FLUKA Monte Carlo code, muon fluxes in the atmosphere have been computed and compared with data taken by the CAPRICE94 experiment at ground level and at different altitudes in the atmosphere. For this purpose only two additions have been introduced with respect to the neutrino flux calculation: the specific solar modulation corresponding to the period of data taking and the bending of charged particles in the atmosphere. Results are in good agreement with experimental data, although improvements in the model are possible. At this level, however, it is not possible to disentangle the interplay between the primary flux and the interaction model.In order to benchmark the 3-dimensional calculation of the atmospheric neutrino flux based on the FLUKA Monte Carlo code, muon fluxes in the atmosphere have been computed and compared with data taken by the CAPRICE94 experiment at ground level and at different altitudes in the atmosphere. For this purpose only two additions have been introduced with respect to the neutrino flux calculation: the specific solar modulation corresponding to the period of data taking and the bending of charged particles in the atmosphere. Results are in good agreement with experimental data, although improvements in the model are possible. At this level, however, it is not possible to disentangle the interplay between the primary flux and the interaction model.In order to benchmark the 3-dimensional calculation of the atmospheric neutrino flux based on the FLUKA Monte Carlo code, muon fluxes in the atmosphere have been computed and compared with data taken by the CAPRICE94 experiment at ground level and at different altitudes in the atmosphere. For this purpose only two additions have been introduced with respect to the neutrino flux calculation: the specific solar modulation corresponding to the period of data taking and the bending of charged particles in the atmosphere. Results are in good agreement with experimental data, although improvements in the model are possible. At this level, however, it is not possible to disentangle the interplay between the primary flux and the interaction model

    Results from the Blazar Monitoring Campaign at the Whipple 10m Gamma-ray Telescope

    Full text link
    In September 2005, the observing program of the Whipple 10 m gamma-ray telescope was redefined to be dedicated almost exclusively to AGN monitoring. Since then the five Northern Hemisphere blazars that had already been detected at Whipple are monitored routinely each night that they are visible. Thanks to the efforts of a large number of multiwavelength collaborators, the first year of this program has been very successful. We report here on the analysis of Markarian 421 observations taken from November, 2005 to May, 2006 in the gamma-ray, X-ray, optical and radio bands.Comment: 4 pages; contribution to the 30th International Cosmic Ray Conference, Merida, Mexico, July 200
    • …
    corecore