26 research outputs found

    Mechanism of nitrogen metabolism-related parameters and enzyme activities in the pathophysiology of autism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is evidence that impaired metabolism play an important role in the etiology of many neuropsychiatric disorders. Although this has not been investigated to date, several recent studies proposed that nitrogen metabolism-related parameters may have a pathophysiological role in autism.</p> <p>Methods</p> <p>The study enrolled 20 Saudi boys with autism aged 4 to 12 years and 20 healthy controls matched for age and gender. Levels of creatine, urea, ammonia, gamma-aminobutyric acid (GABA), glutamate:glutamine (Glu:Gln) ratio, and enzymatic activities of glutamate dehydrogenase, 5'-nucleotidase, and adenosine deaminase (ADA) were determined in plasma samples from both groups.</p> <p>Results</p> <p>We found a significant elevation of creatine, 5'-nucleotidase, GABA, and glutamic acid and a significant decrease in the enzymatic activity of ADA and glutamine level in patients with autism compared with healthy controls. The most significant variation between the two groups was found in the Glu:Gln ratio.</p> <p>Conclusion</p> <p>A raised Glu:Gln ratio together with positive correlations in creatine, GABA, and 5'-nucleotidase levels could contribute to the pathophysiology of autism, and might be useful diagnostic markers. The mechanism through which these parameters might be related to autism is discussed in detail.</p

    Evaluation of the Enzymatic Ammonia Method for Urine on the Du Pont Automatic Clinical Analyzer

    No full text

    Tamoxifen dosage and bioequivalence: a correction.

    No full text

    Hemoglobin Hasharon (α247 his(CD5)β2): a hemoglobin found in low concentration

    No full text

    An analysis of the relationship between plasma urea and ammonia concentration in dairy cattle fed a consistent diet over a 100-day period

    No full text
    Measurement of plasma urea concentration is often used to identify a risk of dietary nitrogen-associated infertility. However, the use of plasma urea concentration in this way relies on it being an effective predictor for other potential toxic products associated with nitrogen metabolism (such as plasma or uterine ammonia). Recent research has shown that dietary nitrogen-associated infertility can be produced by diets which elevate plasma ammonia concentration without markedly increasing plasma urea concentration. Thus for cattle on different diets plasma urea concentration cannot be used to predict plasma ammonia concentration. This study evaluated whether plasma urea concentration could be used to predict plasma ammonia concentration in cattle kept on consistent diets. Data were analysed from a study where 42 cattle had been fed a control diet or the control diet plus 250 g urea per cow per day and had had weekly measurements of post-prandial plasma urea and ammonia concentrations. This analysis found that over a 100-d period, plasma urea concentration was relatively constant and unaffected by time while plasma ammonia concentration was significantly more variable, being affected by time since the study started, and whether cows began the study in the first or second group. Correlation between plasma ammonia and urea was limited; plasma urea concentration explained only 3.8% of the variation in plasma ammonia concentration. These data suggest that, even in cows on consistent diets, plasma urea concentration is not a good predictor of plasma ammonia, and that a simple urea threshold may not accurately identify the risk of dietary nitrogen-associated infertility
    corecore