543 research outputs found

    Ultrafast nematic-orbital excitation in FeSe

    Get PDF
    The electronic nematic phase is an unconventional state of matter that spontaneously breaks the rotational symmetry of electrons. In iron-pnictides/chalcogenides and cuprates, the nematic ordering and fluctuations have been suggested to have as-yet-unconfirmed roles in superconductivity. However, most studies have been conducted in thermal equilibrium, where the dynamical property and excitation can be masked by the coupling with the lattice. Here we use femtosecond optical pulse to perturb the electronic nematic order in FeSe. Through time-, energy-, momentum- and orbital-resolved photo-emission spectroscopy, we detect the ultrafast dynamics of electronic nematicity. In the strong-excitation regime, through the observation of Fermi surface anisotropy, we find a quick disappearance of the nematicity followed by a heavily-damped oscillation. This short-life nematicity oscillation is seemingly related to the imbalance of Fe 3dxz and dyz orbitals. These phenomena show critical behavior as a function of pump fluence. Our real-time observations reveal the nature of the electronic nematic excitation instantly decoupled from the underlying lattice

    Interstellar Gas and X-rays toward the Young Supernova Remnant RCW 86; Pursuit of the Origin of the Thermal and Non-Thermal X-ray

    Full text link
    We have analyzed the atomic and molecular gas using the 21 cm HI and 2.6/1.3 mm CO emissions toward the young supernova remnant (SNR) RCW 86 in order to identify the interstellar medium with which the shock waves of the SNR interact. We have found an HI intensity depression in the velocity range between 46-46 and 28-28 km s1^{-1} toward the SNR, suggesting a cavity in the interstellar medium. The HI cavity coincides with the thermal and non-thermal emitting X-ray shell. The thermal X-rays are coincident with the edge of the HI distribution, which indicates a strong density gradient, while the non-thermal X-rays are found toward the less dense, inner part of the HI cavity. The most significant non-thermal X-rays are seen toward the southwestern part of the shell where the HI gas traces the dense and cold component. We also identified CO clouds which are likely interacting with the SNR shock waves in the same velocity range as the HI, although the CO clouds are distributed only in a limited part of the SNR shell. The most massive cloud is located in the southeastern part of the shell, showing detailed correspondence with the thermal X-rays. These CO clouds show an enhanced CO JJ = 2-1/1-0 intensity ratio, suggesting heating/compression by the shock front. We interpret that the shock-cloud interaction enhances non-thermal X-rays in the southwest and the thermal X-rays are emitted by the shock-heated gas of density 10-100 cm3^{-3}. Moreover, we can clearly see an HI envelope around the CO cloud, suggesting that the progenitor had a weaker wind than the massive progenitor of the core-collapse SNR RX J1713.7-3949. It seems likely that the progenitor of RCW 86 was a system consisting of a white dwarf and a low-mass star with low-velocity accretion winds.Comment: 19 pages, 15 figures, 4 tables, accepted for publication in Journal of High Energy Astrophysics (JHEAp

    Spatially Resolved [FeII] 1.64 \mu m Emission in NGC 5135. Clues for Understanding the Origin of the Hard X-rays in Luminous Infrared Galaxies

    Get PDF
    Spatially resolved near-IR and X-ray imaging of the central region of the Luminous Infrared Galaxy NGC 5135 is presented. The kinematical signatures of strong outflows are detected in the [FeII]1.64 \mu m emission line in a compact region at 0.9 kpc from the nucleus. The derived mechanical energy release is consistent with a supernova rate of 0.05-0.1 yr1^{-1}. The apex of the outflowing gas spatially coincides with the strongest [FeII] emission peak and with the dominant component of the extranuclear hard X-ray emission. All these features provide evidence for a plausible direct physical link between supernova-driven outflows and the hard X-ray emitting gas in a LIRG. This result is consistent with model predictions of starbursts concentrated in small volumes and with high thermalization efficiencies. A single high-mass X-ray binary (HMXB) as the major source of the hard X-ray emission although not favoured, cannot be ruled out. Outside the AGN, the hard X-ray emission in NGC 5135 appears to be dominated by the hot ISM produced by supernova explosions in a compact star-forming region, and not by the emission due to HMXB. If this scenario is common to U/LIRGs, the hard X-rays would only trace the most compact (< 100 pc) regions with high supernova and star formation densities, therefore a lower limit to their integrated star formation. The SFR derived in NGC 5135 based on its hard X-ray luminosity is a factor of two and four lower than the values obtained from the 24 \mu m and soft X-ray luminosities, respectively.Comment: Accepted for Publication in ApJ, 18 pages, 2 figure

    Angiotensin II Reduces Mitochondrial Content in Skeletal Muscle and Affects Glycemic Control

    Get PDF
    OBJECTIVE—Blockade of angiotensin (Ang) II has been shown to prevent new-onset type 2 diabetes. We focused on the effects of AngII on muscle mitochondria, especially on their biogenesis, as an underlining mechanism of type 2 diabetes

    Orientation and symmetries of Alexandrov spaces with applications in positive curvature

    Get PDF
    We develop two new tools for use in Alexandrov geometry: a theory of ramified orientable double covers and a particularly useful version of the Slice Theorem for actions of compact Lie groups. These tools are applied to the classification of compact, positively curved Alexandrov spaces with maximal symmetry rank.Comment: 34 pages. Simplified proofs throughout and a new proof of the Slice Theorem, correcting omissions in the previous versio
    corecore