300 research outputs found

    The molecular genetic analysis of the expanding pachyonychia congenita case collection

    Get PDF
    BACKGROUND: Pachyonychia congenita (PC) is a rare autosomal dominant keratinizing disorder characterized by severe, painful, palmoplantar keratoderma and nail dystrophy, often accompanied by oral leucokeratosis, cysts and follicular keratosis. It is caused by mutations in one of five keratin genes: KRT6A, KRT6B, KRT6C, KRT16 or KRT17. OBJECTIVES: To identify mutations in 84 new families with a clinical diagnosis of PC, recruited by the International Pachyonychia Congenita Research Registry during the last few years. METHODS: Genomic DNA isolated from saliva or peripheral blood leucocytes was amplified using primers specific for the PC-associated keratin genes and polymerase chain reaction products were directly sequenced. RESULTS: Mutations were identified in 84 families in the PC-associated keratin genes, comprising 46 distinct keratin mutations. Fourteen were previously unreported mutations, bringing the total number of different keratin mutations associated with PC to 105. CONCLUSIONS: By identifying mutations in KRT6A, KRT6B, KRT6C, KRT16 or KRT17, this study has confirmed, at the molecular level, the clinical diagnosis of PC in these families

    TIP55, a splice isoform of the KAT5 acetyltransferase, is essential for developmental gene regulation and organogenesis

    Get PDF
    Regulation of chromatin structure is critical for cell type-specific gene expression. Many chromatin regulatory complexes exist in several different forms, due to alternative splicing and differential incorporation of accessory subunits. However, in vivo studies often utilize mutations that eliminate multiple forms of complexes, preventing assessment of the specific roles of each. Here we examined the developmental roles of the TIP55 isoform of the KAT5 histone acetyltransferase. In contrast to the pre-implantation lethal phenotype of mice lacking all four Kat5 transcripts, mice specifically deficient for Tip55 die around embryonic day 11.5 (E11.5). Prior to developmental arrest, defects in heart and neural tube were evident in Tip55 mutant embryos. Specification of cardiac and neural cell fates appeared normal in Tip55 mutants. However, cell division and survival were impaired in heart and neural tube, respectively, revealing a role for TIP55 in cellular proliferation. Consistent with these findings, transcriptome profiling revealed perturbations in genes that function in multiple cell types and developmental pathways. These findings show that Tip55 is dispensable for the pre- and early post-implantation roles of Kat5, but is essential during organogenesis. Our results raise the possibility that isoform-specific functions of other chromatin regulatory proteins may play important roles in development

    Characterization and Comparison of 2 Distinct Epidemic Community-Associated Methicillin-Resistant Staphylococcus aureus Clones of ST59 Lineage.

    Get PDF
    Sequence type (ST) 59 is an epidemic lineage of community-associated (CA) methicillin-resistant Staphylococcus aureus (MRSA) isolates. Taiwanese CA-MRSA isolates belong to ST59 and can be grouped into 2 distinct clones, a virulent Taiwan clone and a commensal Asian-Pacific clone. The Taiwan clone carries the Panton-Valentine leukocidin (PVL) genes and the staphylococcal chromosomal cassette mec (SCCmec) VT, and is frequently isolated from patients with severe disease. The Asian-Pacific clone is PVL-negative, carries SCCmec IV, and a frequent colonizer of healthy children. Isolates of both clones were characterized by their ability to adhere to respiratory A549 cells, cytotoxicity to human neutrophils, and nasal colonization of a murine and murine sepsis models. Genome variation was determined by polymerase chain reaction of selected virulence factors and by multi-strain whole genome microarray. Additionally, the expression of selected factors was compared between the 2 clones. The Taiwan clone showed a much higher cytotoxicity to the human neutrophils and caused more severe septic infections with a high mortality rate in the murine model. The clones were indistinguishable in their adhesion to A549 cells and persistence of murine nasal colonization. The microarray data revealed that the Taiwan clone had lost the ø3-prophage that integrates into the β-hemolysin gene and includes staphylokinase- and enterotoxin P-encoding genes, but had retained the genes for human immune evasion, scn and chps. Production of the virulence factors did not differ significantly in the 2 clonal groups, although more α-toxin was expressed in Taiwan clone isolates from pneumonia patients. In conclusion, the Taiwan CA-MRSA clone was distinguished by enhanced virulence in both humans and an animal infection model. The evolutionary acquisition of PVL, the higher expression of α-toxin, and possibly the loss of a large portion of the β-hemolysin-converting prophage likely contribute to its higher pathogenic potential than the Asian-Pacific clone

    Empirical Power and Sample Size Calculations for Cluster-Randomized and Cluster-Randomized Crossover Studies

    Get PDF
    In recent years, the number of studies using a cluster-randomized design has grown dramatically. In addition, the cluster-randomized crossover design has been touted as a methodological advance that can increase efficiency of cluster-randomized studies in certain situations. While the cluster-randomized crossover trial has become a popular tool, standards of design, analysis, reporting and implementation have not been established for this emergent design. We address one particular aspect of cluster-randomized and cluster-randomized crossover trial design: estimating statistical power. We present a general framework for estimating power via simulation in cluster-randomized studies with or without one or more crossover periods. We have implemented this framework in the clusterPower software package for R, freely available online from the Comprehensive R Archive Network. Our simulation framework is easy to implement and users may customize the methods used for data analysis. We give four examples of using the software in practice. The clusterPower package could play an important role in the design of future cluster-randomized and cluster-randomized crossover studies. This work is the first to establish a universal method for calculating power for both cluster-randomized and cluster-randomized clinical trials. More research is needed to develop standardized and recommended methodology for cluster-randomized crossover studies

    Phasic Phosphorylation of Caldesmon and ERK 1/2 during Contractions in Human Myometrium

    Get PDF
    Human myometrium develops phasic contractions during labor. Phosphorylation of caldesmon (h-CaD) and extracellular signal-regulated kinase 1/2 (ERK 1/2) has been implicated in development of these contractions, however the phospho-regulation of these proteins is yet to be examined during periods of both contraction and relaxation. We hypothesized that protein phosphorylation events are implicated in the phasic nature of myometrial contractions, and aimed to examine h-CaD and ERK 1/2 phosphorylation in myometrium snap frozen at specific stages, including; (1) prior to onset of contractions, (2) at peak contraction and (3) during relaxation. We aimed to compare h-CaD and ERK 1/2 phosphorylation in vitro against results from in vivo studies that compared not-in-labor (NIL) and laboring (L) myometrium. Comparison of NIL (n = 8) and L (n = 8) myometrium revealed a 2-fold increase in h-CaD phosphorylation (ser-789; P = 0.012) during onset of labor in vivo, and was associated with significantly up-regulated ERK2 expression (P = 0.022), however no change in ERK2 phosphorylation was observed (P = 0.475). During in vitro studies (n = 5), transition from non-contracting tissue to tissue at peak contraction was associated with increased phosphorylation of both h-CaD and ERK 1/2. Furthermore, tissue preserved at relaxation phase exhibited diminished levels of h-CaD and ERK 1/2 phosphorylation compared to tissue preserved at peak contraction, thereby producing a phasic phosphorylation profile for h-CaD and ERK 1/2. h-CaD and ERK 1/2 are phosphorylated during myometrial contractions, however their phospho-regulation is dynamic, in that h-CaD and ERK 1/2 are phosphorylated and dephosphorylated in phase with contraction and relaxation respectively. Comparisons of NIL and L tissue are at risk of failing to detect these changes, as L samples are not necessarily preserved in the midst of an active contraction

    Lentiviral Mediated Transgenesis by In Vivo Manipulation of Spermatogonial Stem Cells

    Get PDF
    This report describes a technique for the generation of transgenic mice by in vivo manipulation of spermatogonial stem cells with a high rate of success. Spermatogonial stem cells (SSCs) in pre-pubescent animals were infected in vivo with recombinant lentiviruses expressing EGFP-f and mated with normal females. All male pre-founder mice produced transgenic pups with an overall success rate of over 60%. The transgene was heritable and the pre-founder mice could be used in multiple mating experiments. This technology could be used to perform overexpression/knockdown screens in vivo using bar-coded lentiviruses, thus permitting the design of genetic screens in the mouse. Further, this technology could be adapted to other laboratory animals resulting in the generation of model systems that closely approximate human development and disease

    Efficient Gene Targeting by Homologous Recombination in Rat Embryonic Stem Cells

    Get PDF
    The rat is the preferred experimental animal in many biological studies. With the recent derivation of authentic rat embryonic stem (ES) cells it is now feasible to apply state-of-the art genetic engineering in this species using homologous recombination. To establish whether rat ES cells are amenable to in vivo recombination, we tested targeted disruption of the hypoxanthine phosphoribosyltransferase (hprt) locus in ES cells derived from both inbred and outbred strains of rats. Targeting vectors that replace exons 7 and 8 of the hprt gene with neomycinR/thymidine kinase selection cassettes were electroporated into male Fisher F344 and Sprague Dawley rat ES cells. Approximately 2% of the G418 resistant colonies also tolerated selection with 6-thioguanine, indicating inactivation of the hprt gene. PCR and Southern blot analysis confirmed correct site-specific targeting of the hprt locus in these clones. Embryoid body and monolayer differentiation of targeted cell lines established that they retained differentiation potential following targeting and selection. This report demonstrates that gene modification via homologous recombination in rat ES cells is efficient, and should facilitate implementation of targeted, genetic manipulation in the rat
    • …
    corecore