6 research outputs found

    Nuclear Clusters as a Probe for Expansion Flow in Heavy Ion Reactions at 10-15AGeV

    Get PDF
    A phase space coalescence description based on the Wigner-function method for cluster formation in relativistic nucleus-nucleus collisions is presented. The momentum distributions of nuclear clusters d,t and He are predicted for central Au(11.6AGeV)Au and Si(14.6AGeV)Si reactions in the framework of the RQMD transport approach. Transverse expansion leads to a strong shoulder-arm shape and different inverse slope parameters in the transverse spectra of nuclear clusters deviating markedly from thermal distributions. A clear ``bounce-off'' event shape is seen: the averaged transverse flow velocities in the reaction plane are for clusters larger than for protons. The cluster yields --particularly at low ptp_t at midrapidities-- and the in-plane (anti)flow of clusters and pions change if suitably strong baryon potential interactions are included. This allows to study the transient pressure at high density via the event shape analysis of nucleons, nucleon clusters and other hadrons.Comment: 38 pages, 9 figures, LaTeX type, eps used, subm. to Phys. Rev.

    Two-Proton Correlations from 14.6A GeV/c Si+Pb and 11.5A GeV/c Au+Au Central Collisions

    Full text link
    Two-proton correlation functions have been measured in Si+Pb collisions at 14.6A GeV/c and Au+Au collisions at 11.5A GeV/c by the E814/E877 collaboration. Data are compared with predictions of the transport model RQMD and the source size is inferred from this comparison. Our analysis shows that, for both reactions, the characteristic size of the system at freeze-out exceeds the size of the projectile, suggesting that the fireball created in the collision has expanded. For Au+Au reactions, the observed centrality dependence of the two-proton correlation function implies that more central collisions lead to a larger source sizes.Comment: RevTex, 12 pages, 5 figure
    corecore