60 research outputs found

    LATE MESOZOIC GRANITOIDS OF THE WESTERN TRANSBAIKALIA (RUSSIA) AND THEIR RELATION TO FORMATION OF METAMORPHIC CORE COMPLEXES

    Get PDF
    Early Cretaceous metamorphic core complexes (MCCs) are widespread in North-East Asia and indicate a large-scale crustal extension in this area [Wang et al., 2011, 2012]. Traditionally one of the formation mechanisms of MCCs is related to various magmatic activities including granitoid magmatism [Anderson et al., 1988, Hill et al., 1995; Lister, Baldwin, 1993]. Wang et al. [2012] have subdivided the intrusion associated with MCCs in NE Asia into pre-kinematic (~170–140 Ma), syn-kinematic (~150–125 Ma) and post-kinematic (~125–110 Ma). 40Ar/39Ar biotite and hornblende ages of 140–110 Ma are overlapping for all MCCs of NE Asia and represent the time of the final stage of the MCCs formation [Wang et al., 2012]. Here, we present overview of geochronological and geochemical data for Late Mesozoic granitoids of the Western Transbaikalia and our view on their role in formation of Transbaikalian MCCs.Early Cretaceous metamorphic core complexes (MCCs) are widespread in North-East Asia and indicate a large-scale crustal extension in this area [Wang et al., 2011, 2012]. Traditionally one of the formation mechanisms of MCCs is related to various magmatic activities including granitoid magmatism [Anderson et al., 1988, Hill et al., 1995; Lister, Baldwin, 1993]. Wang et al. [2012] have subdivided the intrusion associated with MCCs in NE Asia into pre-kinematic (~170–140 Ma), syn-kinematic (~150–125 Ma) and post-kinematic (~125–110 Ma). 40Ar/39Ar biotite and hornblende ages of 140–110 Ma are overlapping for all MCCs of NE Asia and represent the time of the final stage of the MCCs formation [Wang et al., 2012]. Here, we present overview of geochronological and geochemical data for Late Mesozoic granitoids of the Western Transbaikalia and our view on their role in formation of Transbaikalian MCCs

    EARLY STAGE OF THE CENTRAL ASIAN OROGENIC BELT BUILDING: EVIDENCES FROM THE SOUTHERN SIBERIAN CRATON

    Get PDF
    The origin of the Central-Asian Orogenic Belt (CAOB), especially of its northern segment nearby the southern margin of the Siberian craton (SC) is directly related to development and closure of the Paleo-Asian Ocean (PAO). Signatures of early stages of the PAO evolution are recorded in the Late Precambrian sedimentary successions of the Sayan-Baikal-Patom Belt (SBPB) on the southern edge of SC. These successions are spread over 2000 km and can be traced along this edge from north-west (Sayan area) to south-east (Baikal area) and further to north-east (Patom area). Here we present the synthesis of all available and reliable LA-ICP-MS U-Pb geochronological studies of detrital zircons from these sedimentary successions.The origin of the Central-Asian Orogenic Belt (CAOB), especially of its northern segment nearby the southern margin of the Siberian craton (SC) is directly related to development and closure of the Paleo-Asian Ocean (PAO). Signatures of early stages of the PAO evolution are recorded in the Late Precambrian sedimentary successions of the Sayan-Baikal-Patom Belt (SBPB) on the southern edge of SC. These successions are spread over 2000 km and can be traced along this edge from north-west (Sayan area) to south-east (Baikal area) and further to north-east (Patom area). Here we present the synthesis of all available and reliable LA-ICP-MS U-Pb geochronological studies of detrital zircons from these sedimentary successions

    MARBLE MÉLANGE: COMPOSITION VARIATIONS AND FORMATION MECHANISMS

    Get PDF
    The Olkhon terrane in the Western Baikal area accommodates four types of carbonate-silicate mixtures: injection (protrusion), metamorphic-boudinated, mingling, and tectonite marble mélange. The outcrops of injection mélange consist of a carbonate matrix with inclusions of native silicic rocks found in the immediate vicinities, commonly cover large areas and lack any distinct linearity in the map view. Mélange of the metamorphic boudinage type comprises diopsidite and tremilote-diopsidite fragments in a dolomitic or calcite-dolomitic matrix. Its origin is apparently due to tectonism and related metamorphism of quartz sandstones in Neoproterozoic strata on the passive margin of the Siberian craton. Mingling mélange appears as calcite marble or carbonate-silicate (calciphyre) veins with metadolerite and granite inclusions of different sizes. The veins formed by intrusion of carbonate and silicate melt batches and subsequent fragmentation of silicate rocks that crystallized earlier. Marble tectonites localized in narrow zones record the late phase of ductile marble injection

    MARBLE DIKES IN THE OLKHON COMPOSITE TERRANE (WEST BAIKAL AREA)

    Get PDF
    Linear or lens-like carbonate (marble) and carbonate-silicate bodies among gabbro and amphibolites within the Krestovsky subterrane of the Olkhon composite terrane (West Baikal Area) are identified as dikes. The dikes commonly dip almost vertically, range in thickness from 20 cm to a few meters, and are up to 100 m long. The Olkhon marble dikes quite often coexist with dolerite dikes and/or granite veins and show signatures of emplacement synchronously with the igneous bodies. The marble dikes differ from mantle carbonatites in mineralogy and chemistry and thus may be derived from sedimentary carbonate rocks molten during collisional events.The origin of the Olkhon carbonate and carbonate-silicate dikes may be explained with two possible geodynamic scenarios. They may be derived either from Neoproterozoic carbonate sediments upon the Early Precambrian basement of a cratonic block which was involved in collisional events, or from abundant carbonate sedimentary material in an island-arc terrane. Large-scale melting of silicate and carbonate rocks was maintained by heat released from mantle mafic magma intruding into the lower crust. The batches of both crustal (carbonate and granitic) and mantle (mafic) melts intruded late during the collision in a strike-slip tectonic setting

    Microfossils of the late proterozoic debengdinskaya formation of the olenekskiy uplift

    Get PDF
    Microfossils from the Middle Riphean Debengdinskaya formation of the Olenekskiy uplift have been studied. Various stenoorganic forms of acritarchs and cyanobacteries are described. Morphological groups which are preliminary compared with large flora taxons are allocated among acritarchs : brown and green seaweed, mushrooms, seaweed located in symbiotic relations (?) with cyanobionts. The prematurity of radical conclusions about age of the deposit based on majority of Proterozoic microfossils is underline

    СТРУКТУРА ЗОЛОТОРУДНОГО МЕСТОРОЖДЕНИЯ ГОЛЕЦ ВЫСОЧАЙШИЙ (СЕВЕРНОЕ ЗАБАЙКАЛЬЕ)

    Get PDF
    The article describes the fold-thrust structure of the Golets Vysochaishy deposit located at the Baikal-Patom Upland in the Marakan-Tunguska megasyncline. The latter is composed of terrigenous-carbonate carbonaceous rocks metamorphosed in greenschist facies conditions. The deposit is detected in the hanging wing of the asymmetric Kamenskaya anticline. In a cross section, the anticline is an S-shaped structure extending in the latitudinal direction. The main feature of the Golets Vysochaishy deposit is the development of interlayer sulfidization zones (pyrite, pyrrhotite), including gold-bearing ones. Its gold-ore zones tend to occur in layered areas of interlayer sliding in the rocks of the Khomolkhinskaya suite.Four structural markers revealed within the deposit area are indicative of repeated deformation processes: (1) sublatitudinal folding, cleavage of the axial surface and its subsequent transformation into schistosity; (2) crenulation cleavage; (3) interlayer sliding and rock breakdown with interlayer drag folds, parallel microfractures and polished slickensides; (4) large quartz veins and veinlets that cross cut the main structural elements in plan.Приводится описание складчато-надвиговой структуры месторождения Голец Высочайший, расположенного на территории Байкало-Патомского нагорья в пределах Маракано-Тунгусской мегасинклинали. Последняя сложена терригенно-карбонатными углеродистыми породами, метаморфизованными в условиях зеленосланцевой фации. Месторождение локализовано в висячем крыле асимметричной Каменской антиклинали S-образной формы в поперечном сечении, протягивающейся в широтном направлении. Главной особенностью месторождения Голец Высочайший является развитие межслоевых зон сульфидизации (пирит, пирротин), в том числе и золотоносных. Золоторудные тела тяготеют к послойным зонам межслоевого скольжения в породах Хомолхинской свиты.В пределах месторождения установлены четыре структурных маркера, указывающих на неоднократность деформационных процессов: 1) формирование складчатости субширотной ориентировки, кливажа осевой поверхности и последующее его трансформирование в сланцеватость; 2) формирование кренуляционного кливажа; 3) межслоевые подвижки (срывы), сопровождающиеся межслоевыми складками волочения, параллельными микротрещинами, а также отполированными зеркалами скольжения; 4) формирование крупных кварцевых жил и прожилков, занимающих секущее положение по отношению к основным плоскостным структурным элементам

    ГЕОХИМИЯ И ВОЗРАСТ ПОРОД НИЖНИХ ПЛАСТИН БУТУЛИЙН-НУРСКОГО И ЗАГАНСКОГО КОМПЛЕКСОВ МЕТАМОРФИЧЕСКИХ ЯДЕР (СЕВЕРНАЯ МОНГОЛИЯ – ЗАПАДНОЕ ЗАБАЙКАЛЬЕ)

    Get PDF
    This article reviews data on ages of rocks in the footwall of the Butuliyn-Nur and Zagan metamorphic core complexes (MCC) and provides new data on the geochemistry of the rock complexes. It is noted that the oldest rocks are mylonitized gneisses on rhyolites (554 Ma) in the footwall of the Butuliyn-Nur MCC. The Late Permian – Triassic (249–211 Ma) igneous rocks are ubiquitous in the footwall of the Butuliyn-Nur and Zagan MCC. The youngest rocks in the studied MCC are the Jurassic granitoids (178–152 Ma) of the Naushki and Verhnemangirtui massifs. In the footwall of the Butuliyn-Nur and Zagan MCC, the most common are granitoids and felsic volcanic rocks (249–211 Ma) with many similar geochemical characteristics, such as high alkalinity, high contents of Sr and Ba, moderate and low concentrations of Nb and Y. Considering the contents of trace elements and REE, the granitoids and the felsic volcanic rocks are similar to I-type granites. Specific compositions of these rocks suggest that they might have formed in conditions of the active continental margin of the Siberian continent over the subducting oceanic plate of the Mongol-Okhotsk Ocean. The granitoids of the Naushki and Verhnemangirtui massifs, which are the youngest of the studied rocks (178–152 Ma), also have similar geochemical characteristics. In both massif, granitoids are ferriferous, mostly alkaline rocks. By contents of both major and trace elements, they are comparable to A-type granites. Such granitoids formed in conditions of intracontinental extension while subduction was replaced by collision. Based on ages and geochemical characteristics of the rocks in the footwall of the Butuliyn-Nur and Zagan MCC, a good correlation is revealed between the studied rocks  and the rock complexes of the Transbaikalian and North-Mongolian segments of the Central Asian fold belt (CAFB), and it can thus be suggested that the regions under study may have a common evolutionary history.В статье приводится обзор данных по возрасту пород нижних пластин Бутулийн-Нурского и Заганского комплексов метаморфических ядер (КМЯ), а также новые данные по геохимии этих породных комплексов. Отмечено, что самыми древними породами являются милонитизированные гнейсы по риолитам (554 млн лет) нижней пластины Бутулийн-Нурского КМЯ. Максимальное распространение среди образований нижних пластин Бутулийн-Нурского и Заганского КМЯ имеют позднепермские – триасовые (249–211 млн лет) магматические породы. Самыми молодыми породами в изученных КМЯ являются гранитоиды юрского возраста (178–152 млн лет) Наушкинского и Верхнемангиртуйского массивов. Наиболее распространенные среди нижних пластин Бутулийн-Нурского и Заганского КМЯ гранитоиды и вулканиты кислого состава с возрастом 249–211 млн лет обнаруживают во многом сходные геохимические характеристики (повышенная щелочность, высокие содержания Sr и Ba, умеренные и низкие концентрации Nb, Y). По содержаниям редких и редкоземельных элементов данные гранитоиды и вулканиты кислого состава обнаруживают сходство с гранитами I-типа. Особенности составов этих пород позволяют допускать их формирование в обстановке активной континентальной окраины Сибирского континента над погружающейся океанической плитой Монголо-Охотского океана. Наиболее молодые из изученных пород гранитоиды Наушкинского и Верхнемангиртуйского массивов с возрастом 178–152 млн лет также обладают сходными геохимическими характеристиками. Гранитоиды обоих массивов являются железистыми, преимущественно щелочными образованиями. По содержаниям как петрогенных, так и редких элементов они сопоставимы с гранитами А-типа. Формирование этих гранитоидов имело место в условиях внутриконтинентального растяжения на фоне смены субдукционного режима на коллизионный. Рассмотренные в статье материалы по возрасту и геохимии пород нижних пластин Бутулийн-Нурского и Заганского КМЯ показывают, что эти породы хорошо коррелируются с породными комплексами забайкальского и северо-монгольского сегментов ЦАСП, свидетельствуя о единой истории эволюции всего этого региона.

    ДАЙКИ МРАМОРОВ И КАЛЬЦИФИРОВ ОЛЬХОНСКОГО КОМПОЗИТНОГО ТЕРРЕЙНА (ЗАПАДНОЕ ПРИБАЙКАЛЬЕ, РОССИЯ)

    Get PDF
    Linear or lens-like carbonate (marble) and carbonate-silicate bodies among gabbro and amphibolites within the Krestovsky subterrane of the Olkhon composite terrane (West Baikal Area) are identified as dikes. The dikes commonly dip almost vertically, range in thickness from 20 cm to a few meters, and are up to 100 m long. The Olkhon marble dikes quite often coexist with dolerite dikes and/or granite veins and show signatures of emplacement synchronously with the igneous bodies. The marble dikes differ from mantle carbonatites in mineralogy and chemistry and thus may be derived from sedimentary carbonate rocks molten during collisional events.The origin of the Olkhon carbonate and carbonate-silicate dikes may be explained with two possible geodynamic scenarios. They may be derived either from Neoproterozoic carbonate sediments upon the Early Precambrian basement of a cratonic block which was involved in collisional events, or from abundant carbonate sedimentary material in an island-arc terrane. Large-scale melting of silicate and carbonate rocks was maintained by heat released from mantle mafic magma intruding into the lower crust. The batches of both crustal (carbonate and granitic) and mantle (mafic) melts intruded late during the collision in a strike-slip tectonic setting.В статье дается характеристика даек мраморов и кальцифиров в пределах Ольхонского композитного террейна (Западное Прибайкалье). Надежно обоснована дайковая природа линейных и линзовидных тел карбонатных пород в массивах габбро и ортоамфиболитах Крестовского субтеррейна. Преобладают субвертикальные дайки мощностью от 20 см до нескольких метров при прослеженной протяженности, иногда превышающей 100 м. Нередко карбонатные дайки ассоциируют с дайками долеритов и/или жилами гранитов с признаками субсинхронного внедрения. По минералого-геохимическим особенностям изученные дайки резко отличаются от карбонатитов мантийного генезиса и, предположительно, являются продуктами плавления первично-осадочных карбонатных толщ в результате коллизионных процессов.Предлагаемая модель образования карбонатных даек включает вовлечение фрагмента раннедокембрийского блока с перекрывающими неопротерозойскими карбонатными осадками в процессе коллизии композитного террейна с Сибирским кратоном. Альтернативным вариантом является присутствие значительного количества карбонатных толщ в островодужном разрезе. Повышение температуры, связанное с внедрением мантийных магм базитового состава в нижние части коры, наряду с утолщением последней, обусловило массовое плавление силикатных пород анхигранитного состава и карбонатов. В процессе наиболее мощно проявленного сдвигового тектогенеза происходило внедрение порций гранитного и карбонатного состава, а также мантийных базитовых магм

    ПЕТРОГЕНЕЗИС И СТРУКТУРНОЕ ПОЛОЖЕНИЕ РАННЕПРОТЕРОЗОЙСКИХ ЧАРНОКИТОВ ТАТАРНИКОВСКОГО КОМПЛЕКСА ЮЖНО-СИБИРСКОГО ПОСТКОЛЛИЗИОННОГО МАГМАТИЧЕСКОГО ПОЯСА СИБИРСКОГО КРАТОНА

    Get PDF
    The article reports on the geological, mineralogical, geochemical and isotope-geochemical studies of granitoids (charnockites) from the Tatarnikovsky massif located in the northern part of the Baikal uplift of the Siberian craton basement. The age of the studied granitoids is 1.85 Ga. Like other unmetamorphosed granitoids and associated volcanic, the granitoids dated 1.88–1.84 Ga are abundant in the southern area of the Siberian craton. These rocks are a part of the South Siberian post-collisional magmatic belt. The Tatarnikovsky granitoids form a series of small massifs confined to the Davan tectonic zone. However, unlike the rocks of the Davan zone, these granitoids have not been subjected to dynamometamorphism, mylonitization and metasomatism, and seem younger than the geologic structure of this zone. The formation of granitoids coincides in time with the youngest formations in the North Baikal volcanoplutonic belt (1.85–1.84 Ga). The Tatarnikovsky granitoids have two facies varieties – coarse-grained and medium-fine-grained porphyric, the transition being gradual. Considering the mineral composition of the granitoids, specifically the presence of orthopyroxene, these rocks can be classified as charnockites. The research results presented in this article are based on the study of charnockites in the Tatarnikovsky massif, the largest in the Tatarnikovsky complex. The chemical composition of the Tatarnikovsky coarse-grained granitoids corresponds to monzonite and syenite, and fine-grained porphyry granitoids are granosyenite. All the studied granitoids are close to alkaline and calc-alkaline, metaluminous (ASI=0.83–0.97), ferrous (FeO*/(FeO*+MgO)=0.86–0.89) granite, with high concentrations of Nb, Y, Zr, and Ba, and low concentrations of Sr. According to their geochemical characteristics, the Tatarnikovsky granitoids correspond to A-type granite. These rocks show negative values εNd(t)=–1.4…–3.5 and model age ТNdDM=2.4–2.5 Ga. The temperature estimated for the initial stages of crystallization of granitoid melts suggests that granitoids formed at high temperatures, 890–960°С (i.e. the zircon saturation temperature). The granitoid melts crystallized in hypabyssal conditions at the pressure of 2.2–2.9 kbar, as well as in conditions of low or moderate oxygen fugacity. According to the mineralogical, geochemical and isotope-geochemical data, the Tatarnikovsky charnockite could have resulted from melting of mafic rocks from the lower crust (gabbroid, and ferrodiorite) which are products of differentiation of the tholeiitic mantle magmas that had intruded into the base of the continental crust. Taking into account the high concentrations of Ba and the positive anomalies of Eu in the distribution spectra of rare-earth elements (REE) of the coarse-grained granitoids, it can be suggested that these granitoids are the products of partial melting of the crustalmafic source. The fine-grained porphyry granitoids with higher silica contents and lower Ba and Zr contents than those in the coarse-grained granitoids, as well as the negative anomalies of Eu in the REE distribution spectra, are the products of fractional crystallization of the granitoid melt. With regard to formation of the unified structure of the Siberian craton, the geodynamic setting for formation of the Tatarnikovsky charnockite is considered as postcollisional extension due to the fact that these rocks belong to the South Siberian post-collisional magmatic belt. However, on a more local scale of the Baikal uplift of the Siberian craton basement, we suggest that the intercontinental rifting setting was in place during the intrusion of the Tatarnikovsky granitoids, the rocks of the North Baikal volcanoplutonic belt, the granitoids of the Primorsky and Achadsky complexes that cross the rocks of the Akitkan fold belt, collision events in which ceased 1.98–1.97 Ga ago.В статье приводятся результаты геологического, минералогического, геохимического и изотопногеохимического изучения гранитоидов (чарнокитов) татарниковского комплекса, расположенного в северной части Байкальского краевого выступа фундамента Сибирского кратона. Гранитоиды имеют возраст 1.85 млрд лет и подобно другим неметаморфизованным гранитоидам и ассоциирующим с ними вулканитам с возрастом 1.88–1.84 млрд лет, широко распространенным в пределах южной части Сибирского кратона, входят в структуру Южно-Сибирского постколлизионного магматического пояса. Гранитоиды татарниковского комплекса образуют серию небольших массивов, приуроченных к Даванской зоне смятия. Однако, в отличие от пород Даванской зоны, гранитоиды не подвержены процессам динамометаморфизма, милонитизации и метасоматоза, что указывает на их формирование после становления структуры этой зоны. Образование гранитоидов совпадает по времени с формированием наиболее молодых образований Северо-Байкальского вулканоплутонического пояса (1.85–1.84 млрд лет). Среди гранитоидов татарниковского комплекса выделяются две фациальные разновидности с постепенными переходами: крупнозернистые породы и средне- и мелкозернистые порфировые породы. Минеральный состав гранитоидов, а именно присутствие в них ромбического пироксена, позволяет относить их к чарнокитам. Результаты, представленные в статье, основываются на изучении чарнокитов в самом крупном из массивов татарниковского комплекса – Татарниковском массиве. Крупнозернистые гранитоиды Татарниковского массива по своему химическому составу соответствуют монцонитам и сиенитам, а мелкозернистые порфировые гранитоиды – граносиенитам. Все гранитоиды по составу близки щелочным и известково-щелочным, умеренно-глиноземистым (ASI=0.83–0.97), железистым (FeO*/(FeO*+MgO)= =0.86–0.89) гранитам. Исследованные породы характеризуются высокими концентрациями Nb, Y, Zr, Ba и пониженными содержаниями Sr. По своим геохимическим характеристикам породы соответствуют гранитам А-типа. Проанализированные гранитоиды Татарниковского массива характеризуются отрицательными величинами εNd(t)=–1.4…–3.5 и модельным возрастом ТNdDM=2.4–2.5 млрд лет. Оценка температур начальных стадий кристаллизации гранитоидных расплавов показала, что формирование гранитоидов происходило при высоких температурах – 890–960 °С (температура насыщения расплава цирконом). Кристаллизация гранитоидных расплавов осуществлялась в гипабиссальных условиях при давлении 2.2–2.9 кбар, а также в условиях низкой или умеренной фугитивности кислорода. Минералогические, геохимические и изотопно-геохимические данные свидетельствуют о том, что чарнокиты татарниковского комплекса могли быть образованы за счет плавления мафических пород нижней коры (габброидов, ферродиоритов), которые были сформированы в результате дифференциации мантийных толеитовых магм, внедрившихся в основание континентальной коры. Высокие концентрации Ba и положительные Eu аномалии на спектрах распределения редкоземельных элементов (РЗЭ) крупнозернистых гранитоидов позволяют допускать, что гранитоиды формировались посредством частичного плавления корового мафического источника. Мелкозернистые порфировые гранитоиды, обнаруживающие более высокие содержания кремнезема и более низкие содержания Ва, Zr по сравнению с крупнозернистыми разностями, а также отрицательные Eu аномалии на спектрах распределения РЗЭ, были образованы в результате фракционной кристаллизации гранитоидного расплава. В масштабе становления единой структуры Сибирского кратона геодинамическая обстановка формирования чарнокитов татарниковского комплекса рассматривается как постколлизионное растяжение на основании их принадлежности к Южно-Сибирскому постколлизионному магматическому поясу. Однако в более локальном масштабе Байкальского выступа фундамента кратона внедрение гранитоидов татарниковского комплекса, так же как пород СевероБайкальского вулканоплутонического пояса, гранитоидов приморского и абчадского комплексов, пересекающих породы Акитканского складчатого пояса, коллизионные события в котором завершились на временном рубеже 1.98–1.97 млрд лет, происходило в обстановке внутриконтинентального рифтогенеза
    corecore