32 research outputs found

    Deterministic chaos, fractals and quantumlike mechanics in atmospheric flows

    Full text link
    The complex spaciotemporal patterns of atmospheric flows that result from the cooperative existence of fluctuations ranging in size from millimetres to thousands of kilometres are found to exhibit long-range spacial and temporal correlations. These correlations are manifested as the self-similar fractal geometry of the global cloud cover pattern and the inverse power-law form for the atmospheric eddy energy spectrum. Such long-range spaciotemporal correlations are ubiquitous in extended natural dynamical systems and are signatures of deterministic chaos or self-organized criticality. In this paper, a cell dynamical system model for atmospheric flows is developed by consideration of microscopic domain eddy dynamical processes. This nondeterministic model enables formulation of a simple closed set of governing equations for the prediction and description of observed atmospheric flow structure characteristics as follows. The strange-attractor design of the field of deterministic chaos in atmospheric flows consists of a nested continuum of logarithmic spiral circulations that trace out the quasi-periodic Penrose tiling pattern, identified as the quasi-crystalline structure in condensed matter physics. The atmospheric eddy energy structure follows laws similar to quantum mechanical laws. The apparent wave-particle duality that characterize quantum mechanical laws is attributed to the bimodal phenomenological form of energy display in the bidirectional energy flow that is intrinsic to eddy circulations, e.g., formation of clouds in updrafts and dissipation of clouds in downdrafts that result in the observed discrete cellular geometry of cloud structure.Comment: 11 pages, 5 figure

    Deterministic Chaos Model for Self-Organized Adaptive Networks in Atmospheric Flows

    Full text link
    The complex spatiotemporal patterns of atmospheric flows resulting from the cooperative existence of fluctuations ranging in size from millimeters to thousands of kilometers are found to exhibit long-range spatial and temporal correlations manifested as the selfsimilar fractal geometry to the global cloud cover pattern and the inverse power law form for the atmospheric eddy energy spectrum. Such long-range spatial and temporal correlations are ubiquitous to extended natural dynamical systems and is a signature of the strange attractor design characterizing deterministic chaos or self-organized criticality. The unified network of global atmospheric circulations is analogous to the neural networks of the human brain.Comment: 8 Pages, 2 Figure
    corecore