86 research outputs found

    Ovarian cancer risk in Polish BRCA1 mutation carriers is not associated with the prohibitin 3' untranslated region polymorphism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The variable penetrance of ovarian cancer in <it>BRCA1 </it>mutation carriers suggests that other genetic or environmental factors modify disease risk. The C to T transition in the 3' untranslated region of the prohibitin (<it>PHB</it>) gene alters mRNA function and has recently been shown to be associated with hereditary breast cancer risk in Polish women harbouring <it>BRCA1 </it>mutations.</p> <p>Methods</p> <p>To investigate whether the <it>PHB </it>3'UTR polymorphism also modifies hereditary ovarian cancer risk, we performed a case-control study among Polish women carrying one of the three common founder mutations (5382insC, 300 T > G, 4154delA) including 127 ovarian cases and 127 unaffected controls who had both breasts and ovaries intact. Controls were matched to cases by year of birth and <it>BRCA1 </it>mutation. Genotyping analysis was performed using PCR-based restriction fragment length polymorphism analysis. Odds ratios (OR) were calculated using conditional and penalized univariable and multivariable logistic regression.</p> <p>Results</p> <p>A comparison of the genotype frequencies between cases and controls revealed no association of the <it>PHB </it>3'UTR _CT+TT genotypes with ovarian cancer risk (OR<sub>adj </sub>1.34; 95% CI, 0.59–3.11).</p> <p>Conclusion</p> <p>Our data suggest that the <it>PHB </it>3'UTR polymorphism does not modify ovarian cancer risk in women carrying one of the three Polish <it>BRCA1 </it>founder mutations.</p

    Tumor Suppression by RNA from C/EBPβ 3′UTR through the Inhibition of Protein Kinase Cε Activity

    Get PDF
    BACKGROUND: Since the end of last century, RNAs from the 3'untranslated region (3'UTR) of several eukaryotic mRNAs have been found to exert tumor suppression activity when introduced into malignant cells independent of their whole mRNAs. In this study, we sought to determine the molecular mechanism of the tumor suppression activity of a short RNA from 3'UTR of C/EBPβ mRΝΑ (C/EBPβ 3'UTR RNA) in human hepatocarcinoma cells SMMC-7721. METHODOLOGY/PRINCIPAL FINDINGS: By using Western blotting, immunocytochemistry, molecular beacon, confocal microscopy, protein kinase inhibitors and in vitro kinase assays, we found that, in the C/EBPβ 3'UTR-transfectant cells of SMMC-7721, the overexpressed C/EBPβ 3'UTR RNA induced reorganization of keratin 18 by binding to this keratin; that the C/EBPβ 3'UTR RNA also reduced phosphorylation and expression of keratin 18; and that the enzyme responsible for phosphorylating keratin 18 is protein kinase Cε. We then found that the C/EBPβ 3'UTR RNA directly inhibited the phosphorylating activity of protein kinase Cε; and that C/EBPβ 3'UTR RNA specifically bound with the protein kinase Cε-keratin 18 conjugate. CONCLUSION/SIGNIFICANCE: Together, these facts suggest that the tumor suppression in SMMC-7721 by C/EBPβ 3'UTR RNA is due to the inhibition of protein kinase Cε activity through direct physical interaction between C/EBPβ 3'UTR RNA and protein kinase Cε. These facts indicate that the 3'UTR of some eukaryotic mRNAs may function as regulators for genes other than their own

    Comparative genome analysis of PHB gene family reveals deep evolutionary origins and diverse gene function

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>PHB (Prohibitin) gene family is involved in a variety of functions important for different biological processes. PHB genes are ubiquitously present in divergent species from prokaryotes to eukaryotes. Human PHB genes have been found to be associated with various diseases. Recent studies by our group and others have shown diverse function of PHB genes in plants for development, senescence, defence, and others. Despite the importance of the PHB gene family, no comprehensive gene family analysis has been carried to evaluate the relatedness of PHB genes across different species. In order to better guide the gene function analysis and understand the evolution of the PHB gene family, we therefore carried out the comparative genome analysis of the PHB genes across different kingdoms.</p> <p>Results</p> <p>The relatedness, motif distribution, and intron/exon distribution all indicated that PHB genes is a relatively conserved gene family. The PHB genes can be classified into 5 classes and each class have a very deep evolutionary origin. The PHB genes within the class maintained the same motif patterns during the evolution. With<it> Arabidopsis</it> as the model species, we found that PHB gene intron/exon structure and domains are also conserved during the evolution. Despite being a conserved gene family, various gene duplication events led to the expansion of the PHB genes. Both segmental and tandem gene duplication were involved in Arabidopsis PHB gene family expansion. However, segmental duplication is predominant in Arabidopsis. Moreover, most of the duplicated genes experienced neofunctionalization. The results highlighted that PHB genes might be involved in important functions so that the duplicated genes are under the evolutionary pressure to derive new function.</p> <p>Conclusion</p> <p>PHB gene family is a conserved gene family and accounts for diverse but important biological functions based on the similar molecular mechanisms. The highly diverse biological function indicated that more research needs to be carried out to dissect the PHB gene function. The conserved gene evolution indicated that the study in the model species can be translated to human and mammalian studies.</p

    Current and future applications of mobile and wireless networks

    No full text
    corecore