43 research outputs found

    TERRIGENOUS-CARBONATE CROSS-SECTION IN THE MIDDLE COURSE OF THE VITIM RIVER: CORRELATION, AGE, AND GEODYNAMICS

    Get PDF
    The descripton has been provided for the cross-section (12 km) of a thick sediment unit on the left bank of the Vitim River, opposite the Nizhny Orlov and Dannaya rivers. This place is related to the Karalon-Mamakan area of the Baikal-Muya belt of the Baikal folded area. The changes have been made to the names formally assigned to the following stratigraphic subdivisions: Sulban series was renamed Chayangra formation, and Kelyan subseries was renamed Karalon formation. Evidence has been found for the complex folded and faulted structure and litological-facial characteristics of the cross-section. Some evidence has been provided to confirm that the Karalon formation is younger than the Chayangra formation. When this result is comapared to the well-studied subdivisions of the northern areas of the region, it is apparent that the Karalon formation may well correlate with the Dalnetaiga horizon of the Lower Vendian, the Chayangra formation – with the Ballaganakh series of the Late Riphean, and its layers at the bottom are similar in composition to the the Medvezhevsk horizon

    ТЕРРИГЕННО-КАРБОНАТНЫЙ РАЗРЕЗ СРЕДНЕГО ТЕЧЕНИЯ Р. ВИТИМ: КОРРЕЛЯЦИЯ, ВОЗРАСТНОЕ И ГЕОДИНАМИЧЕСКОЕ ПОЛОЖЕНИЕ

    Get PDF
    The descripton has been provided for the cross-section (12 km) of a thick sediment unit on the left bank of the Vitim River, opposite the Nizhny Orlov and Dannaya rivers. This place is related to the Karalon-Mamakan area of the Baikal-Muya belt of the Baikal folded area. The changes have been made to the names formally assigned to the following stratigraphic subdivisions: Sulban series was renamed Chayangra formation, and Kelyan subseries was renamed Karalon formation. Evidence has been found for the complex folded and faulted structure and litological-facial characteristics of the cross-section. Some evidence has been provided to confirm that the Karalon formation is younger than the Chayangra formation. When this result is comapared to the well-studied subdivisions of the northern areas of the region, it is apparent that the Karalon formation may well correlate with the Dalnetaiga horizon of the Lower Vendian, the Chayangra formation – with the Ballaganakh series of the Late Riphean, and its layers at the bottom are similar in composition to the the Medvezhevsk horizon.Описан разрез (12 км) мощной толщи осадочных пород левого берега р. Витим, напротив рек Нижний Орлов и Данная. Участок относится к Каралон-Мамаканскому блоку Байкало-Муйского внутреннего пояса Байкальской складчатой области [Rytsk et al., 2011]. Изменены формально выделенные ранее названия стратиграфических подразделений: сюльбанская серия на чаянгрскую толщу, келянская подсерия на каралонскую толщу. Выявлена сложная складчато-разрывная структура и литолого-фациальные характеристики разреза. Подтверждено более молодое положение каралонской толщи по отношению к чаянгрской. При сопоставлении с хорошо изученными подразделениями северных зон региона показано, что каралонская толща, вероятнее всего, соотносится с дальнетайгинским горизонтом нижнего венда, чаянгрская толща сопоставляется с баллаганахской серией верхнего рифея, а ее нижние слои, судя по составу, могут соответствовать медвежевскому горизонту

    EARLY STAGE OF THE CENTRAL ASIAN OROGENIC BELT BUILDING: EVIDENCES FROM THE SOUTHERN SIBERIAN CRATON

    Get PDF
    The origin of the Central-Asian Orogenic Belt (CAOB), especially of its northern segment nearby the southern margin of the Siberian craton (SC) is directly related to development and closure of the Paleo-Asian Ocean (PAO). Signatures of early stages of the PAO evolution are recorded in the Late Precambrian sedimentary successions of the Sayan-Baikal-Patom Belt (SBPB) on the southern edge of SC. These successions are spread over 2000 km and can be traced along this edge from north-west (Sayan area) to south-east (Baikal area) and further to north-east (Patom area). Here we present the synthesis of all available and reliable LA-ICP-MS U-Pb geochronological studies of detrital zircons from these sedimentary successions.The origin of the Central-Asian Orogenic Belt (CAOB), especially of its northern segment nearby the southern margin of the Siberian craton (SC) is directly related to development and closure of the Paleo-Asian Ocean (PAO). Signatures of early stages of the PAO evolution are recorded in the Late Precambrian sedimentary successions of the Sayan-Baikal-Patom Belt (SBPB) on the southern edge of SC. These successions are spread over 2000 km and can be traced along this edge from north-west (Sayan area) to south-east (Baikal area) and further to north-east (Patom area). Here we present the synthesis of all available and reliable LA-ICP-MS U-Pb geochronological studies of detrital zircons from these sedimentary successions

    Microfossils of the late proterozoic debengdinskaya formation of the olenekskiy uplift

    Get PDF
    Microfossils from the Middle Riphean Debengdinskaya formation of the Olenekskiy uplift have been studied. Various stenoorganic forms of acritarchs and cyanobacteries are described. Morphological groups which are preliminary compared with large flora taxons are allocated among acritarchs : brown and green seaweed, mushrooms, seaweed located in symbiotic relations (?) with cyanobionts. The prematurity of radical conclusions about age of the deposit based on majority of Proterozoic microfossils is underline

    Characterizing model errors in chemical transport modeling of methane: impact of model resolution in versions v9-02 of GEOS-Chem and v35j of its adjoint model

    Get PDF
    The GEOS-Chem simulation of atmospheric CH4_{4} was evaluated against observations from the Thermal and Near Infrared Sensor for Carbon Observations Fourier Transform Spectrometer (TANSO-FTS) on the Greenhouse Gases Observing Satellite (GOSAT), the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS), and the Total Carbon Column Observing Network (TCCON). We focused on the model simulations at the 4°×5° and 2°×2.5° horizontal resolutions for the period of February–May 2010. Compared to the GOSAT, TCCON, and ACE-FTS data, we found that the 2°×2.5° model produced a better simulation of CH4_{4}, with smaller biases and a higher correlation to the independent data. We found large resolution-dependent differences such as a latitude-dependent XCH4_{4} bias, with higher column abundances of CH4_{4} at high latitudes and lower abundances at low latitudes at the 4°×5° resolution than at 2°×2.5°. We also found large differences in CH4_{4} column abundances between the two resolutions over major source regions such as China. These differences resulted in up to 30 % differences in inferred regional CH4_{4} emission estimates from the two model resolutions. We performed several experiments using 222Rn, 7Be, and CH4_{4} to determine the origins of the resolution-dependent errors. The results suggested that the major source of the latitude-dependent errors is excessive mixing in the upper troposphere and lower stratosphere, including mixing at the edge of the polar vortex, which is pronounced at the 4°×5° resolution. At the coarser resolution, there is weakened vertical transport in the troposphere at midlatitudes to high latitudes due to the loss of sub-grid tracer eddy mass flux in the storm track regions. The vertical air mass fluxes are calculated in the model from the degraded coarse-resolution wind fields and the model does not conserve the air mass flux between model resolutions; as a result, the low resolution does not fully capture the vertical transport. This produces significant localized discrepancies, such as much greater CH4_{4} abundances in the lower troposphere over China at 4°×5° than at 2°×2.5°. Although we found that the CH4_{4} simulation is significantly better at 2°×2.5° than at 4°×5°, biases may still be present at 2°×2.5° resolution. Their importance, particularly in regards to inverse modeling of CH4_{4} emissions, should be evaluated in future studies using online transport in the native general circulation model as a benchmark simulation

    Characterizing model errors in chemical transport modeling of methane: using GOSAT XCH4_{4} data with weak-constraint four-dimensional variational data assimilation

    Get PDF
    We examined biases in the global GEOS-Chem chemical transport model for the period of February–May 2010 using weak-constraint (WC) four-dimensional variational (4D-Var) data assimilation and dry-air mole fractions of CH4_{4} (XCH4_{4}) from the Greenhouse gases Observing SATellite (GOSAT). The ability of the observations and the WC 4D-Var method to mitigate model errors in CH4_{4} concentrations was first investigated in a set of observing system simulation experiments (OSSEs). We then assimilated the GOSAT XCH4_{4} retrievals and found that they were capable of providing information on the vertical structure of model errors and of removing a significant portion of biases in the modeled CH4_{4} state. In the WC 4D-Var assimilation, corrections were added to the modeled CH4_{4} state at each model time step to account for model errors and improve the model fit to the assimilated observations. Compared to the conventional strong-constraint (SC) 4D-Var assimilation, the WC method was able to significantly improve the model fit to independent observations. Examination of the WC state corrections suggested that a significant source of model errors was associated with discrepancies in the model CH4_{4} in the stratosphere. The WC state corrections also suggested that the model vertical transport in the troposphere at middle and high latitudes is too weak. The problem was traced back to biases in the uplift of CH4_{4} over the source regions in eastern China and North America. In the tropics, the WC assimilation pointed to the possibility of biased CH4_{4} outflow from the African continent to the Atlantic in the mid-troposphere. The WC assimilation in this region would greatly benefit from glint observations over the ocean to provide additional constraints on the vertical structure of the model errors in the tropics. We also compared the WC assimilation at 4° × 5° and 2° × 2.5° horizontal resolutions and found that the WC corrections to mitigate the model errors were significantly larger at 4° × 5° than at 2° × 2.5° resolution, indicating the presence of resolution-dependent model errors. Our results illustrate the potential utility of the WC 4D-Var approach for characterizing model errors. However, a major limitation of this approach is the need to better characterize the specified model error covariance in the assimilation scheme

    ЮЖНЫЙ ФРАГМЕНТ СИБИРСКОГО КРАТОНА: “ЛАНДШАФТНАЯ” ИСТОРИЯ ЗА ДВА МИЛЛИАРДА ЛЕТ

    Get PDF
    In the state-of-the-art geology, concepts of evolution of interrelated geodynamic and biotic events throughout the history of the Earth have been developed (Fig. 1). Research results on sediments, bio-stratigraphy and geodynamics of the southern fragment of the Siberian craton (SSC, Fig. 2) provide for more or less reliable assessments of the status and evolution of ancient landscapes and biotas from the Lower Proterozoic to the Cenozoic.In the Lower Proterozoic, the geodynamic regime of the Urik-Iyskiy graben was similar to those of the westernpacific island-arc systems, which resulted in the orogen formation and established post-orogen granitoids of 1.86 bln years of age. At the beginning of the Early Riphean, volcano-sedimentary masses were accumulated in continental basins (Fig. 2, 3A). Collision orogenesis also resulted in the occurrence of the terrigeno-volcanogenic complex of the Akitkanskaya suite in the Western Pribaikalie and the transecting Irelskiy granitoids, aged 1.86 bln years, at the edge of the craton. Later on, most probably before the Riphean, peneplanation took place, and a shallow peripheral sea was formed with highly-mature sediments of the Purpolskaya suite. Different environments are reconstructed in the KodarUdokan zone. Sediments of the Udokanskaya suite, varying in thicknesses from 11 to 14 km, suggest a complicated evolution of sedimentation in the peripheral marine basin. Dozens of radiochronological datings of granitoids of the Chuiskiy and Kodarskiy complex which transect the Udokanskaya suite are within the range from 1.7 to 2.0 bln years. From the deposit composition and texture, it can be suggested that the middle, Chineiskaya sub-suite was formed under island-arc conditions; and glacial phenomena occurred in the late Udokan time.Further geological history of the SSC can be described only within the period after the Late Riphean sedimentations (see Fig. 3Б, В). The SSC evolution in the Neo-Proterozoic began with divergence events, which most probably occurred in the period of 1000–850 mln years in the east, and in the interval of 780–730 mln years in the west of the territory. The latest period is logically aligned with disintegration of Rodini, the super-continent. The period of 780–680 mln years in the eastern part of the region can defined by the beginning of convergency processes, formation and evolution of the island arc and the back-arc basin. It is supposed that basal layers of the Baikalskaya and Oselokskaya suites and their analogues occurred 730 mln years ago, and evidences of glacial processes in these series correlate with the global Sturtian glaciations. The period of 680–630 mln years was characterized by formation of the foreland-type peripheral basin which was then replaced by a system of orogen-type submontain troughs in the Early Vendian (from 630 mln years, see Fig. 3Г). The second half of the Vendian in various zones of SSC was distinguished by shallow-water carbonate-terrigenous sediments of a similar type. Compensatory sedimentation occurred in residual valleys of the basin. Fast infill of the basin and leveling of the relief resulted in the stationary regime of the relatively shallow, yet vast basin. In the Early Cambrian, carbonate sedimentation occurred throughout the Siberian Platform and in the area adjacent to the SSC (see Fig. 3Д).The Paleozoic sediments preserved mainly in the central and northern regions of the Siberian Platform reflect a complex evolution of internal and epicontinental seas and shallower basins of the Siberian continent named Angarida. In the Ordovician, predominating were carbonate rocks with marine fauna. In the Silurian was characterized by a variety of sediments formed in different marine environments, ranging from distal shelf to shallow water and salted gulfs. In the Late Silurian and the Early Devonian, the territory of Angarida was land. Local volcanism with mafic lava eruptions through fractures took place at the background of sub-continental sedimentation. In the Late Paleozoic, the geologic development was marked by major transformation of the pattern of tectonic structures, that was most likely related to inside-plate extension and thinning of the continental crust. In the Mid and Late Carbon (Fig. 4A), the integrated Tungusskiy sedimentation basin was formed as a result of continuous and uniform bending. In the Early Permian (see Fig. 4Б), positive tectonic movements led to significant dewatering of the Paleozoic basins, so that they turned into a washed-out area. Overall raising of the Siberian Platform preconditioned climate changes, such as aridization and climate cooling. In the Mesozoic, landscapes were presented by a combination of flat uplands, wide river valleys with swampy plains and lakes wherein carbonous sediments were accumulated. Basic volcanism with shield eruptions and sub-volcanic rocks was typical then. In the Jurassic (see Fig. 4B), elements observed in the recent topography of the Siberian Platform were formed. In that period, major structural transformation occurred in association with the largest diastrophic cycles in the territory of the Eastern Asia, including formation of the Baikal rift and its branches.From the analyses of the available data which are briefly presented above, it is obvious that the period of two billion years in the Earth history includes numerous epochs of diastrophic processes of tremendous destructive capacity. Unconformities of formations differing in ages by millions and even hundreds of million years, as those dating back to the Pre-Cambrian, suggest quite realistic yet astounding visions. At the background of scenarios of floods, rock up-thrusts, volcanic explosions and earthquakes evidenced from the very remote past, the current geological and climatic phenomena may seem quite trivial.Сегодня в геологии выработаны представления об эволюции взаимосвязанных геодинамических и биотических событий в истории Земли. Результаты седиментационных, биостратиграфических и геодинамических исследований южного фрагмента Сибирского кратона (ЮСК) позволяют с той или иной степенью достоверности оценить состояние и эволюцию древних ландшафтов и биот с нижнего протерозоя до кайнозоя.В нижнем протерозое Урикско-Ийского грабена существовал геодинамический режим, по своим характеристикам сходный с островодужными системами западно-тихоокенского типа, приведший к формированию орогена и становлению посторогенных гранитоидов с возрастом 1.86 млрд лет. В начале раннего рифея в континентальных бассейнах шло накопление осадочно-вулканогенных толщ. Терригенно-вулканогенные отложения акитканской серии Западного Прибайкалья и прорывающие их гранитоиды ирельского комплекса с возрастом 1.86 млрд лет формировались на краю кратона также в результате процессов коллизионного орогена. Далее, видимо до начала рифея, происходила пенепленизация территории с последующим заложением мелководного окраинного моря, где формировались высокозрелые осадки пурпольской свиты. Другие обстановки реконструируются в Кодаро-Удоканской зоне. Отложения удоканской серии мощностью 11–14 км показывают сложную эволюцию осадконакопления морского окраинного бассейна. Десятки радиохронологических датировок гранитоидов чуй- ско-кодарского комплекса, прорывающих удоканскую серию, укладываются в интервал 1.7–2.0 млрд лет. По составу отложений и текстурам предполагается существование островодужных условий во время формирования средней, чинейской, подсерии и гляциальные события в позднеудоканское время.Дальнейшая геологическая история ЮСК может быть описана только с позднерифейских образований. Эволюция ЮСК в неопротерозое начинается с дивергентных событий, которые наиболее вероятно проявились в интервале 1000–850 млн лет на востоке и в интервале 780–730 млн лет на западе территории. Последний период логично увязывается с процессами распада суперконтинента Родиния. Период в 780–680 млн лет в восточной части региона определяется началом конвергентных событий, заложением и эволюцией островной дуги и задугового бассейна. Предполагается, что формирование базальных слоёв байкальской и оселковой серий и их аналогов происходило 730 млн лет назад, а свидетельства присутствующих в них гляциальных событий коррелируются с глобальным стертовским оледенением. Период в 680–630 млн лет характеризуется образованием окраинного бассейна форландового типа, который в раннем венде – 630 млн лет – сменился системой предгорных прогибов орогенного этапа. Вторая половина венда в разных зонах ЮСК определяется схожим типом мелководных карбонатно-терригенных отложений. Компенсационное осадконакопление происходило в остаточных впадинах бассейна. Быстрое его заполнение и нивелирование рельефа привели к режиму пассивного осадконакопления в относительно мелководном, но обширном бассейне. В раннем кембрии карбонатонакопление распространилось по всей площади Сибирской платформы и прилегающей территории ЮСК.Отложения палеозоя, сохранившиеся преимущественно в центральных и северных районах Сибирской платформы, отражают сложную эволюцию внутренних и эпиконтинентальных морей и более мелких бассейнов Сибирского континента – Ангариды. В ордовике наблюдается господство карбонатных пород с морской фауной. Силур характерен разнообразной гаммой осадков разных морских обстановок, от дистального шельфа до мелководья и засоленных заливов. В конце силура и начале девона территория Ангариды представляла собой сушу. На фоне субконтинентальной седиментации был проявлен локальный вулканизм с трещинным излиянием лав основного состава. Позднепалеозойский этап геологического развития ознаменовался крупной перестройкой плана тектонических структур, которая, по всей видимости, связана с внутриплитным растяжением и утонением континентальной коры. В среднем–позднем карбоне в результате длительного и равномерного прогибания сформировался единый Тунгусский седиментационный бассейн. В раннепермскую эпоху положительные тектонические движения привели к значительному осушению палеобассейнов и превращению их в область размыва. Общее поднятие Сибирской платформы обусловило изменения климата в сторону аридизации и похолодания. В мезозое ландшафты представляли собой сочетание пологих поднятий, широких речных долин с болотистыми равнинами и озерами, где накапливались угленосные отложения. Характерен базитовый вулканизм, известный в виде как щитовых эффузивов, так и субвулканических пород. В юрском периоде происходит становление основных элементов современного рельефа Сибирской платформы. Это время крупной структурной перестройки, связанной с проявлениями на территории Восточной Азии значительных диастрофических циклов, в том числе и заложением Байкальского рифта и его ветвей.Анализируя данные за два миллиарда лет, можно отчетливо представить, что в истории Земли существовали эпохи диастрофических процессов огромной разрушительной силы. Несогласие между толщами, разделен- ными миллионами и тем более сотнями миллионов лет (как в докембрии), может вызвать вполне реальные картины, потрясающие воображение. Это сюжеты происходивших в далеком прошлом наводнений, горовоздыманий, извержений вулканов и землетрясений, по сравнению с которыми наблюдаемые в современности проявления геологической и климатической активности представляются достаточно обыденными

    Plasma cytokines in patients with COVID-19 during acute phase of the disease and following complete recovery

    Get PDF
    COVID-19, an infection caused by the new coronavirus SARS-CoV-2, is associated with a number of pathophysiological mechanisms, mobilizing a wide spectrum of biomolecules, mainly, cytokines.The purpose of this study was to evaluate levels of multiple cytokines in blood plasma from the patients with COVID-19 during acute phase of the disease, and upon complete recovery. Samples of peripheral blood plasma of 56 patients with COVID-19, 69 convalescents and 10 healthy individuals were examined. Concentrations of 46 molecules, such as IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-9, IL-12 (p40), IL-12 (p70), IL-13, IL-15, IL-17A/CTLA8, IL-17-E/IL-25, IL-17F, IL-18, IL-22, IL-27, IFNα2, IFNγ, TNFα, TNFβ/ Lymphotoxin-α (LTA), CCL2/MCP-1, CCL3/MIP-1α, CCL4/MIP-1β, CCL7/MCP-3, CCL11/Eotaxin, CCL22/MDC, CXCL1/GROα, CXCL8/IL-8, CXCL9/MIG, CXCL10/IP-10, CX3CL1/Fractalkine, IL-1ra, IL-10, EGF, FGF-2/FGF-basic, Flt3 Ligand, G-CSF, M-CSF, GM-CSF, PDGF-AA, PDGF-AB/ BB, TGF-α, VEGF-A were measured via xMAP multiplexing technology. Significantly increased levels of 18 cytokines were found in blood plasma from COVID-19 patients during acute phase of the disease (as compared to control group), i.e., IL-6, IL-7, IL-15, IL-27, TNFα, TNFβ/Lymphotoxin-α (LTA), CCL2/MCP-1, CCL7/MCP-3, CXCL1/GROα, CXCL8/IL-8, CXCL10/IP-10, CXCL9/MIG, IL-1rа, IL-10, M-CSF, GM-CSF, VEGF-A. We found a significant decrease of nearly all the mentioned cytokines in recovered patients, in comparison with those who had moderate, severe/extremely severe disease. Moreover, we revealed a significantly decreased level of 8 cytokines in plasma from convalescents, as compared with control group, i.e., IL-1α, IL-2, IL-9, IL-12 p40, IL-18, CCL22/MDC, Flt3 Ligand, TGF-α. Immune response caused by SARS-CoV-2 infection involves multiple cytokines, mostly, with pro-inflammatory effects. We have shown for the first time that the convalescence phase is characterized by significantly lower levels of cytokines which regulate cellular differentiation and hematopoiesis (in particular, lymphocytes, T-cells and NK-cells). Over acute phase of the disease, the levels of these cytokines did not change. We revealed a significant decrease of most plasma cytokines upon recovery as compared to acute phase. On the contrary, acute phase of the disease is accompanied by significant increase of both pro- and antiinflammatory cytokines in blood plasma

    Влияние нозокомиальной инфекции на тяжесть течения и исход заболевания у пациентов с COVID-19 тяжелого и крайне тяжелого течения

    Get PDF
    The mechanisms of development of nosocomial infectious complications in COVID-19 and the contribution of bacterial and mycotic superinfection to the formation of extremely high mortality among patients with severe and extremely severe course of this disease have not yet been fully revealed. The objective: to study epidemiology, risk factors for the development of nosocomial superinfection, and its effect on the severity and outcome of the disease in patients with COVID-19.Subjects and Methods. 383 cases of severe and extremely severe COVID-19 were retrospectively analyzed. Demographic data, the presence of concomitant diseases, community-acquired co-infection at the time of hospitalization, data on the methods used to treat new coronavirus infection, severity of the course of the disease, developed infectious complications and their etiology, and the disease outcome were studied. Risk factors for the development of secondary infectious complications and the contribution of nosocomial superinfection to the severity of COVID-19 and the disease outcome were evaluated.Results. Risk factors for the development of secondary infectious complications include age over 65 years (OR 1.04; 95% CI 1.03–1.06; p < 0.0001), concomitant cardiovascular pathology (OR 3.82; 95% CI 2.02‒7.19; p < 0.0001), chronic kidney disease, including requiring renal replacement therapy (OR 2.01; 95% CI 1.33–3.02; p = 0.0007), and glucocorticoid therapy (OR 1.62; 95% CI 1.02–2.69; p = 0.04). The development of nosocomial infectious complications in patients with COVID-19 is associated with a more severe course of the disease and unfavorable prognosis (OR 13.44; 95% CI 8.23‒21.92; p < 0.0001).Conclusion. Identification of risk factors for the development of secondary infectious complications in COVID-19 allows developing differentiated approaches to the pathogenetic treatment of patients with severe COVID-19, increasing alertness in terms of the development of nosocomial infections, ensuring their timely diagnosis and treatment.Механизмы развития нозокомиальных инфекционных осложнений при COVID-19 и вклад бактериальной и микотической суперинфекции в формирование крайне высокой смертности среди пациентов с тяжелым и крайне тяжелым течением этого заболевания до сих пор в полной мере не раскрыты.Цель исследования: изучить эпидемиологию, факторы риска развития нозокомиальной суперинфекции и ее влияние на тяжесть течения и исход заболевания у пациентов с COVID-19.Материал и методы. Ретроспективно проанализировано 383 случая COVID-19 тяжелого и крайне тяжелого течения. Изучены демографические данные, наличие сопутствующих заболеваний, внебольничной коинфекции на момент госпитализации, данные о примененных методах лечения новой коронавирусной инфекции, тяжести течения заболевания, развившихся инфекционных осложнениях и их этиологии, исходе заболевания. Оценке подвергнуты факторы риска развития вторичных инфекционных осложнений и вклад нозокомиальной суперинфекции в тяжесть течения COVID-19 и исход заболевания.Результаты. К факторам риска развития вторичных инфекционных осложнений можно отнести возраст более 65 лет (ОШ 1,04; 95%-ный ДИ 1,03–1,06; p < 0,0001), сопутствующую сердечно-сосудистую патологию (ОШ 3,82; 95%-ный ДИ 2,02–7,19; p < 0,0001), хроническую болезнь почек, в том числе требующую заместительной почечной терапии (ОШ 2,01; 95%-ный ДИ 1,33–3,02; p = 0,0007), терапию глюкокортикоидами (ОШ 1,62; 95%-ный ДИ 1,02–2,69; p = 0,04). Развитие нозокомиальных инфекционных осложнений у пациентов с COVID-19 ассоциировано с более тяжелым течением заболевания и неблагоприятным прогнозом (ОШ 13,44; 95%-ный ДИ 8,23–21,92; p < 0,0001).Заключение. Выявление факторов риска развития вторичных инфекционных осложнений при COVID-19 позволит выработать дифференцированные подходы к патогенетическому лечению больных с тяжелым течением COVID-19, повысить настороженность в плане развития нозокомиальных инфекций, обеспечить их своевременную диагностику и лечение

    Determination of water content in clay and organic soil using microwave oven

    Get PDF
    The article deals with the techniques of soil water content determination using microwave radiation. Its practical application would allow solving the problems of resource efficiency in geotechnical survey due to reduction of energy and resource intensity of laboratory analysis as well as its acceleration by means of decreasing labour intensity and, as a result, cost reduction. The article presents a detail analysis of approaches to soil water content determination and soil drying, considers its features and application. The study in soil of different composition, typical for Western Siberia including organic and organic-mineral ones, is a peculiarity of the given article, which makes it rather topical. The article compares and analyzes the results of the investigation into soil water content, which are obtained via conventional techniques and the original one developed by the authors, consisting in microwave drying. The authors also give recommendation on microwave technique application to dry soil
    corecore