1,644 research outputs found

    Improved spatial resolution of elemental maps through inversion of LA-ICP-MS data

    Get PDF
    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) provides the spatial distribution of elements within crystals and therefore can constrain the rates of geological processes. Spatial resolution of LA-ICP-MS is limited by the requirement to ablate sufficient material to surpass the detection limit of the instrument: too little material and the concentration cannot be measured; too much material from the same spatial location and the possibility of depth dependent variations in concentration increases. Because of this requirement and typical analytical setup, this commonly places a lower bound on the diameter of an ablation ‘spot’ size of approximately 20 ÎŒm for elements with ppm concentration. Here we present a means to achieve sub-spot size resolution using inverse methods. We discretize the space sampled in an analysis into pixels and note that the average concentration of the pixels sampled by a spot equals the measured concentration. As multiple overlapping spots sample some of the same pixels, we can combine discrete expressions for each spot as a system of linear equations. Through linear inversion with smoothness constraints we can solve for unknown pixel concentrations. We highlight this approach with two natural examples in which diffusive processes are important: magmatic ascent speeds and (U-Th)/He noble gas thermochronometry. In these examples, accurate results require that the true concentration gradients can be recovered from LA-ICP-MS data. We show that the ability to infer rapid rates of magma ascent is improved from months to weeks and that we are able to interpret previously un-interpretable thermochronometric data

    Late Cenozoic deepening of Yosemite Valley, USA

    Get PDF
    Although Yosemite Valley, USA, catalyzed the modern environmental movement and fueled foundational debates in geomorphology, a century of investigation has failed to definitively determine when it formed. The non-depositional nature of the landscape and homogeneous bedrock have prevented direct geological assessments. Indirect assumptions about the age of downcutting have ranged from pre-Eocene to Pleistocene. Clarity on this issue would not only satisfy public interest but also provide a new constraint for contentious debates about the Cenozoic tectonic and geomorphologic history of the Sierra Nevada in California. Here we use thermochronometric analysis of radiogenic helium in apatite crystals, coupled with numerical models of crustal temperatures beneath evolving topography, to demonstrate significant late Cenozoic deepening of Tenaya Canyon, Yosemite’s northeastern branch. Approximately 40%–90% of the current relief has developed since 10 Ma and most likely since 5 Ma. This coincides with renewed regional tectonism, which is a long-hypothesized but much debated driver of Sierran canyon development. Pleistocene glaciation caused spatially variable incision and valley widening in Yosemite Valley, whereas little contemporaneous erosion occurred in the adjacent upper Tuolumne watershed. Such variations probably arise from glacial erosion’s dependence on topographic focusing of ice discharge into zones of rapid flow, and on the abundance of pre-existing fractures in the substrate. All available data, including those from our study, are consistent with a moderately high and slowly eroding mid-Cenozoic Sierra Nevada followed by significant late Cenozoic incision of some, but not all, west-side canyon

    Short period attractors and non-ergodic behavior in the deterministic fixed energy sandpile model

    Get PDF
    We study the asymptotic behaviour of the Bak, Tang, Wiesenfeld sandpile automata as a closed system with fixed energy. We explore the full range of energies characterizing the active phase. The model exhibits strong non-ergodic features by settling into limit-cycles whose period depends on the energy and initial conditions. The asymptotic activity ρa\rho_a (topplings density) shows, as a function of energy density ζ\zeta, a devil's staircase behaviour defining a symmetric energy interval-set over which also the period lengths remain constant. The properties of ζ\zeta-ρa\rho_a phase diagram can be traced back to the basic symmetries underlying the model's dynamics.Comment: EPL-style, 7 pages, 3 eps figures, revised versio

    Time-optimal synthesis of unitary transformations in coupled fast and slow qubit system

    Full text link
    In this paper, we study time-optimal control problems related to system of two coupled qubits where the time scales involved in performing unitary transformations on each qubit are significantly different. In particular, we address the case where unitary transformations produced by evolutions of the coupling take much longer time as compared to the time required to produce unitary transformations on the first qubit but much shorter time as compared to the time to produce unitary transformations on the second qubit. We present a canonical decomposition of SU(4) in terms of the subgroup SU(2)xSU(2)xU(1), which is natural in understanding the time-optimal control problem of such a coupled qubit system with significantly different time scales. A typical setting involves dynamics of a coupled electron-nuclear spin system in pulsed electron paramagnetic resonance experiments at high fields. Using the proposed canonical decomposition, we give time-optimal control algorithms to synthesize various unitary transformations of interest in coherent spectroscopy and quantum information processing.Comment: 8 pages, 3 figure

    Spatially Heterogeneous Post-Caledonian Burial and Exhumation Across the Scottish Highlands

    Get PDF
    The postassembly, postrift evolution of passive margins is an essential element of global continental tectonics. Thermal and exhumational histories of passive margins are commonly attributed to a number of drivers, including uplift and erosional retreat of a rift-flank escarpment, intraplate fault reactivation, mantle-driven uplift, and erosional disequilibrium, yet in many cases, a specific factor may appear to dominate the history of a given passive margin. Here, we investigate the complex evolution of passive margins by quantifying exhumation patterns in western Scotland. We build upon the well-studied thermal evolution of the Scottish North Atlantic passive margin to test the importance of spatially heterogeneous factors in driving postorogenic burial and exhumation. Independent investigations of the cooling history from seven different field sites across the western Scottish Highlands using radiogenic apatite helium thermochronometry ([U-Th]/He; n = 14; ca. 31–363 Ma) and thermal modeling confirm that post-Caledonian heating and burial, as well as cooling and exhumation, must have been variable across relatively short distances (i.e., tens of kilometers). Heating associated with Paleogene hotspot activity and rifting locally explains some of this spatial variation, but additional drivers, including margin tilting during rifting, vertical separation along reactivated faults, and nonuniform glacial erosion in the late Cenozoic, are also likely required to produce the observed heterogeneity. These results indicate that passive margins may experience variable burial, uplift, and erosion patterns and histories, without exhibiting a single, dominant driver for behavior before, during, and after rifting

    A chiral crystal in cold QCD matter at intermediate densities?

    Full text link
    The analogue of Overhauser (particle-hole) pairing in electronic systems (spin-density waves with non-zero total momentum QQ) is analyzed in finite-density QCD for 3 colors and 2 flavors, and compared to the color-superconducting BCS ground state (particle-particle pairing, QQ=0). The calculations are based on effective nonperturbative four-fermion interactions acting in both the scalar diquark as well as the scalar-isoscalar quark-hole ('σ\sigma') channel. Within the Nambu-Gorkov formalism we set up the coupled channel problem including multiple chiral density wave formation, and evaluate the resulting gaps and free energies. Employing medium-modified instanton-induced 't Hooft interactions, as applicable around ÎŒq≃0.4\mu_q\simeq 0.4 GeV (or 4 times nuclear saturation density), we find the 'chiral crystal phase' to be competitive with the color superconductor.Comment: 14 pages ReVTeX, including 11 ps-/eps-figure

    Crystalline ground state in chiral Gross-Neveu and Cooper pair models at finite densities

    Get PDF
    We study the possibility of spatially non-uniform ground state in (1+1)-dimensional models with quartic fermi interactions at finite fermion densities by introducing chemical potential \mu. We examine the chiral Gross-Neveu model and the Cooper pair model as toy models of the chiral symmetry breaking and the difermion pair condensates which are presumed to exist in QCD. We confirm in the chiral Gross-Neveu model that the ground state has a crystalline structure in which the chiral condensate oscillates in space with wave number 2\mu. Whereas in the Cooper pair model we find that the vacuum structure is spatially uniform. Some discussions are given to explain this difference.Comment: 18 pages, REVTeX, 3 eps figure

    Antithymocyte Globulin Plus G-CSF Combination Therapy Leads to Sustained Immunomodulatory and Metabolic Effects in a Subset of Responders With Established Type 1 Diabetes.

    Get PDF
    Low-dose antithymocyte globulin (ATG) plus pegylated granulocyte colony-stimulating factor (G-CSF) preserves ÎČ-cell function for at least 12 months in type 1 diabetes. Herein, we describe metabolic and immunological parameters 24 months following treatment. Patients with established type 1 diabetes (duration 4-24 months) were randomized to ATG and pegylated G-CSF (ATG+G-CSF) (N = 17) or placebo (N = 8). Primary outcomes included C-peptide area under the curve (AUC) following a mixed-meal tolerance test (MMTT) and flow cytometry. "Responders" (12-month C-peptide ≄ baseline), "super responders" (24-month C-peptide ≄ baseline), and "nonresponders" (12-month C-peptide < baseline) were evaluated for biomarkers of outcome. At 24 months, MMTT-stimulated AUC C-peptide was not significantly different in ATG+G-CSF (0.49 nmol/L/min) versus placebo (0.29 nmol/L/min). Subjects treated with ATG+G-CSF demonstrated reduced CD4+ T cells and CD4+/CD8+ T-cell ratio and increased CD16+CD56hi natural killer cells (NK), CD4+ effector memory T cells (Tem), CD4+PD-1+ central memory T cells (Tcm), Tcm PD-1 expression, and neutrophils. FOXP3+Helios+ regulatory T cells (Treg) were elevated in ATG+G-CSF subjects at 6, 12, and 18 but not 24 months. Immunophenotyping identified differential HLA-DR expression on monocytes and NK and altered CXCR3 and PD-1 expression on T-cell subsets. As such, a group of metabolic and immunological responders was identified. A phase II study of ATG+G-CSF in patients with new-onset type 1 diabetes is ongoing and may support ATG+G-CSF as a prevention strategy in high-risk subjects

    A Diagrammatic Approach to Crystalline Color Superconductivity

    Get PDF
    We present a derivation of the gap equation for the crystalline color superconducting phase of QCD which begins from a one-loop Schwinger-Dyson equation written using a Nambu-Gorkov propagator modified to describe the spatially varying condensate. Some aspects of previous variational calculations become more straightforward when rephrased beginning from a diagrammatic starting point. This derivation also provides a natural base from which to generalize the analysis to include quark masses, nontrivial crystal structures, gluon propagation at asymptotic densities, and nonzero temperature. In this paper, we analyze the effects of nonzero temperature on the crystalline color superconducting phase.Comment: 15 pages. 2 eps figure
    • 

    corecore