1,452 research outputs found

    Total Quantum Zeno Effect beyond Zeno Time

    Full text link
    In this work we show that is possible to obtain Total Quantum Zeno Effect in an unstable systems for times larger than the correlation time of the bath. The effect is observed for some particular systems in which one can chose appropriate observables which frequent measurements freeze the system into the initial state. For a two level system in a squeezed bath one can show that there are two bath dependent observables displaying Total Zeno Effect when the system is initialized in some particular states. We show also that these states are intelligent states of two conjugate observables associated to the electromagnetic fluctuations of the bath.Comment: 6 pages, 3 figures, Contributed to Quantum Optics III, Pucon, Chile, November 200

    Total Quantum Zeno effect and Intelligent States for a two level system in a squeezed bath

    Get PDF
    In this work we show that by frequent measurements of adequately chosen observables, a complete suppression of the decay in an exponentially decaying two level system interacting with a squeezed bath is obtained. The observables for which the effect is observed depend on the the squeezing parameters of the bath. The initial states which display Total Zeno Effect are intelligent states of two conjugate observables associated to the electromagnetic fluctuations of the bath.Comment: 5 pages, 3 figure

    Orthogonal subsets of classical root systems and coadjoint orbits of unipotent groups

    Full text link
    Let Φ\Phi be a classical root system and kk be a field of sufficiently large characteristic. Let GG be the classical group over kk with the root system Φ\Phi, UU be its maximal unipotent subgroup and u\mathfrak{u} be the Lie algebra of UU. Let DD be an orthogonal subset of Φ\Phi and Ω\Omega be a coadjoint orbit of UU associated with DD. We construct a polarization of u\mathfrak{u} at the canonical form on Ω\Omega. We also find the dimension of Ω\Omega in terms of the Weyl group of Φ\Phi. As a corollary, we determine all possible dimensions of irreducible complex represenations of the group UU for the case of finite field kk.Comment: 11 page

    Effect of light polarization on plasma distribution and filament formation

    Full text link
    We show that, for 200 fs light pulses at 790 nm, the formation of filaments is strongly affected by the laser light polarization . Filamentation does not exist for a pure circularly polarized light, propagating in vacuum before focusing in air, while there is no difference for focusing the light in air or vacuum for linearly polarized light.Comment: 4pages 2 figure

    Lattice Model for water-solute mixtures

    Full text link
    A lattice model for the study of mixtures of associating liquids is proposed. Solvent and solute are modeled by adapting the associating lattice gas (ALG) model. The nature of interaction solute/solvent is controlled by tuning the energy interactions between the patches of ALG model. We have studied three set of parameters, resulting on, hydrophilic, inert and hydrophobic interactions. Extensive Monte Carlo simulations were carried out and the behavior of pure components and the excess properties of the mixtures have been studied. The pure components: water (solvent) and solute, have quite similar phase diagrams, presenting: gas, low density liquid, and high density liquid phases. In the case of solute, the regions of coexistence are substantially reduced when compared with both the water and the standard ALG models. A numerical procedure has been developed in order to attain series of results at constant pressure from simulations of the lattice gas model in the grand canonical ensemble. The excess properties of the mixtures: volume and enthalpy as the function of the solute fraction have been studied for different interaction parameters of the model. Our model is able to reproduce qualitatively well the excess volume and enthalpy for different aqueous solutions. For the hydrophilic case, we show that the model is able to reproduce the excess volume and enthalpy of mixtures of small alcohols and amines. The inert case reproduces the behavior of large alcohols such as, propanol, butanol and pentanol. For last case (hydrophobic), the excess properties reproduce the behavior of ionic liquids in aqueous solution.Comment: 28 pages, 13 figure

    Telescopic actions

    Get PDF
    A group action H on X is called "telescopic" if for any finitely presented group G, there exists a subgroup H' in H such that G is isomorphic to the fundamental group of X/H'. We construct examples of telescopic actions on some CAT[-1] spaces, in particular on 3 and 4-dimensional hyperbolic spaces. As applications we give new proofs of the following statements: (1) Aitchison's theorem: Every finitely presented group G can appear as the fundamental group of M/J, where M is a compact 3-manifold and J is an involution which has only isolated fixed points; (2) Taubes' theorem: Every finitely presented group G can appear as the fundamental group of a compact complex 3-manifold.Comment: +higher dimension

    Nematic twist-bend phase with nanoscale modulation of molecular orientation

    Get PDF
    A state of matter in which molecules show a long-range orientational order and no positional order is called a nematic liquid crystal. The best known and most widely used (for example, in modern displays) is the uniaxial nematic, with the rod-like molecules aligned along a single axis, called the director. When the molecules are chiral, the director twists in space, drawing a right-angle helicoid and remaining perpendicular to the helix axis; the structure is called a chiral nematic. Here using transmission electron and optical microscopy, we experimentally demonstrate a new nematic order, formed by achiral molecules, in which the director follows an oblique helicoid, maintaining a constant oblique angle with the helix axis and experiencing twist and bend. The oblique helicoids have a nanoscale pitch. The new twist-bend nematic represents a structural link between the uniaxial nematic (no tilt) and a chiral nematic (helicoids with right-angle tilt)

    Non-thermal high-energy emission from colliding winds of massive stars

    Full text link
    Colliding winds of massive star binary systems are considered as potential sites of non-thermal high-energy photon production. This is motivated merely by the detection of synchrotron radio emission from the expected colliding wind location. Here we investigate the properties of high-energy photon production in colliding winds of long-period WR+OB-systems. We found that in the dominating leptonic radiation process anisotropy and Klein-Nishina effects may yield spectral and variability signatures in the gamma-ray domain at or above the sensitivity of current or upcoming gamma-ray telescopes. Analytical formulae for the steady-state particle spectra are derived assuming diffusive particle acceleration out of a pool of thermal wind particles, and taking into account adiabatic and all relevant radiative losses. For the first time we include their advection/convection in the wind collision zone, and distinguish two regions within this extended region: the acceleration region where spatial diffusion is superior to convective/advective motion, and the convection region defined by the convection time shorter than the diffusion time scale. The calculation of the Inverse Compton radiation uses the full Klein-Nishina cross section, and takes into account the anisotropic nature of the scattering process. This leads to orbital flux variations by up to several orders of magnitude which may, however, be blurred by the geometry of the system. The calculations are applied to the typical WR+OB-systems WR 140 and WR 147 to yield predictions of their expected spectral and temporal characteristica and to evaluate chances to detect high-energy emission with the current and upcoming gamma-ray experiments. (abridged)Comment: 67 pages, 24 figures, submitted to Ap
    corecore