721 research outputs found

    Possible Detection of Causality Violation in a Non-local Scalar Model

    Full text link
    We consider the possibility that there may be causality violation detectable at higher energies. We take a scalar nonlocal theory containing a mass scale Λ\Lambda as a model example and make a preliminary study of how the causality violation can be observed. We show how to formulate an observable whose detection would signal causality violation. We study the range of energies (relative to Λ\Lambda) and couplings to which the observable can be used.Comment: Latex, 30 page

    Relating the generating functionals in field/antifield formulation through finite field dependent BRST transformation

    Full text link
    We study the field/antifield formulation of pure Yang Mills theory in the framework of finite field dependent BRST transformation. We show that the generating functionals corresponding to different solutions of quantum master equation are connected through the finite field dependent BRST transformations. We establish this result with the help of several explicit examples.Comment: Revtex4, 18 pages, No figs, Accepted in Eur. Phys. J

    A superspace formulation of Abelian antisymmetric tensor gauge theory

    Get PDF
    We apply a superspace formulation to the four-dimensional gauge theory of a massless Abelian antisymmetric tensor field of rank 2. The theory is formulated in a six-dimensional superspace using rank-2 tensor, vector and scalar superfields and their associated supersources. It is shown that BRS transformation rules of fields are realized as Euler-Lagrange equations without assuming the so-called horizontality condition and that a generating functional Wˉ\bar{W} constracted in the superspace reduces to that for the ordinary gauge theory of Abelian rank-2 antisymmetric tensor field. The WT identity for this theory is derived by making use of the superspace formulation and is expressed in a neat and compact form Wˉ/θ=0\partial\bar{W}/\partial\theta=0.Comment: Latex, 19pages, No fig

    Superspace Formulation of Yang- Mills Theory II: Inclusion of Gauge Invariant Operators and Scalars

    Get PDF
    In a superspace formulation of Yang-Mills theory previously proposed, we show how gauge-invariant operators and scalars can be incorporated keeping intact the (broken) Osp(3,12)Osp(3,1|2) symmetry of the superspace action. We show in both cases, that the WT identities can be cast in a simple form Wˉθ=0\frac{\partial\bar{W}}{\partial\theta}=0.Comment: Revtex, 19 pages, No figure

    Wilson Loop and the Treatment of Axial Gauge Poles

    Get PDF
    We consider the question of gauge invariance of the Wilson loop in the light of a new treatment of axial gauge propagator proposed recently based on a finite field-dependent BRS (FFBRS) transformation. We remark that as under the FFBRS transformation the vacuum expectation value of a gauge invariant observable remains unchanged, our prescription automatically satisfies the Wilson loop criterion. Further, we give an argument for {\it direct} verification of the invariance of Wilson loop to O(g^4) using the earlier work by Cheng and Tsai. We also note that our prescription preserves the thermal Wilson loop to O(g^2).Comment: 8 pages, LaTex; some typos related to equation (18) correcte

    Level density and level-spacing distributions of random, self-adjoint, non-Hermitian matrices

    Full text link
    We investigate the level-density σ(x)\sigma(x) and level-spacing distribution p(s)p(s) of random matrices M=AFMM=AF\neq M^{\dagger} where FF is a (diagonal) inner-product and AA is a random, real symmetric or complex Hermitian matrix with independent entries drawn from a probability distribution q(x)q(x) with zero mean and finite higher moments. Although not Hermitian, the matrix MM is self-adjoint with respect to FF and thus has purely real eigenvalues. We find that the level density σF(x)\sigma_F(x) is independent of the underlying distribution q(x)q(x), is solely characterized by FF, and therefore generalizes Wigner's semicircle distribution σW(x)\sigma_W(x). We find that the level-spacing distributions p(s)p(s) are independent of q(x)q(x), are dependent upon the inner-product FF and whether AA is real or complex, and therefore generalize the Wigner's surmise for level spacing. Our results suggest FF-dependent generalizations of the well-known Gaussian Orthogonal Ensemble (GOE) and Gaussian Unitary Ensemble (GUE) classes.Comment: 5 pages, 5 figures, revised tex

    Anomalous dimension of the gluon operator in pure Yang-Mills theory

    Full text link
    We present new one loop calculations that confirm the theorems of Joglekar and Lee on the renormalization of composite operators. We do this by considering physical matrix elements with the operators inserted at non-zero momentum. The resulting IR singularities are regulated dimensionally. We show that the physical matrix element of the BRST exact gauge variant operator which appears in the energy- momentum tensor is zero. We then show that the physical matrix elements of the classical energy-momentum tensor and the gauge invariant twist two gluon operator are independent of the gauge fixing parameter. A Sudakov factor appears in the latter cases. The universality of this factor and the UV finiteness of the energy-momentum tensor provide another method of finding the anomalous dimension of the gluon operator. We conjecture that this method applies to higher loops and takes full advantage of the triangularity of the mixing matrix.Comment: submitted to Phys. Rev. D, 18 pages LaTEX uses psfig and revtex macros, figures appended as uuencoded Postscript file (complete Postsript version including figures available via anonymous ftp from ftp://max.physics.sunysb.edu/preprints/harris/paper.ps.Z), ITP-SB-94-3

    BV formulation of higher form gauge theories in a superspace

    Full text link
    We discuss the extended BRST and anti-BRST symmetry (including shift symmetry) in the Batalin-Vilkovisky (BV) formulation for two and three form gauge theories. Further we develop the superspace formulation for the BV actions for these theories. We show that the extended BRST invariant BV action for these theories can be written manifestly covariant manner in a superspace with one Grassmann coordinate. On the hand a superspace with two Grassmann coordinates are required for a manifestly covariant formulation of the extended BRST and extended anti-BRST invariant BV actions for higher form gauge theories.Comment: 30 pages, No figure, version to appear in EPJ

    Competing PT potentials and re-entrant PT symmetric phase for a particle in a box

    Full text link
    We investigate the effects of competition between two complex, PT\mathcal{PT}-symmetric potentials on the PT\mathcal{PT}-symmetric phase of a "particle in a box". These potentials, given by VZ(x)=iZsign(x)V_Z(x)=iZ\mathrm{sign}(x) and Vξ(x)=iξ[δ(xa)δ(x+a)]V_\xi(x)=i\xi[\delta(x-a)-\delta(x+a)], represent long-range and localized gain/loss regions respectively. We obtain the PT\mathcal{PT}-symmetric phase in the (Z,ξ)(Z,\xi) plane, and find that for locations ±a\pm a near the edge of the box, the PT\mathcal{PT}-symmetric phase is strengthened by additional losses to the loss region. We also predict that a broken PT\mathcal{PT}-symmetry will be restored by increasing the strength ξ\xi of the localized potential. By comparing the results for this problem and its lattice counterpart, we show that a robust PT\mathcal{PT}-symmetric phase in the continuum is consistent with the fragile phase on the lattice. Our results demonstrate that systems with multiple, PT\mathcal{PT}-symmetric potentials show unique, unexpected properties.Comment: 7 pages, 3 figure

    PT-symmetry breaking and maximal chirality in a nonuniform PT-symmetric ring

    Full text link
    We study the properties of an N-site tight-binding ring with parity and time-reversal (PT) symmetric, Hermitian, site-dependent tunneling and a pair of non-Hermitian, PT-symmetric, loss and gain impurities ±iγ\pm i\gamma. The properties of such lattices with open boundary conditions have been intensely explored over the past two years. We numerically investigate the PT-symmetric phase in a ring with a position-dependent tunneling function tα(k)=[k(Nk)]α/2t_\alpha(k)=[k(N-k)]^{\alpha/2} that, in an open lattice, leads to a strengthened PT-symmetric phase, and study the evolution of the PT-symmetric phase from the open chain to a ring. We show that, generally, periodic boundary conditions weaken the PT-symmetric phase, although for experimentally relevant lattice sizes N50N \sim 50, it remains easily accessible. We show that the chirality, quantified by the (magnitude of the) average transverse momentum of a wave packet, shows a maximum at the PT-symmetric threshold. Our results show that although the wavepacket intensity increases monotonically across the PT-breaking threshold, the average momentum decays monotonically on both sides of the threshold.Comment: 11 pages, 5 figures, preprin
    corecore