9,063 research outputs found

    State space formulas for stable rational matrix solutions of a Leech problem

    Full text link
    Given stable rational matrix functions GG and KK, a procedure is presented to compute a stable rational matrix solution XX to the Leech problem associated with GG and KK, that is, G(z)X(z)=K(z)G(z)X(z)=K(z) and supz1X(z)1\sup_{|z|\leq 1}\|X(z)\|\leq 1. The solution is given in the form of a state space realization, where the matrices involved in this realization are computed from state space realizations of the data functions GG and KK.Comment: 25 page

    State space formulas for a suboptimal rational Leech problem I: Maximum entropy solution

    Full text link
    For the strictly positive case (the suboptimal case) the maximum entropy solution XX to the Leech problem G(z)X(z)=K(z)G(z)X(z)=K(z) and X=supz1X(z)1\|X\|_\infty=\sup_{|z|\leq 1}\|X(z)\|\leq 1, with GG and KK stable rational matrix functions, is proved to be a stable rational matrix function. An explicit state space realization for XX is given, and X\|X\|_\infty turns out to be strictly less than one. The matrices involved in this realization are computed from the matrices appearing in a state space realization of the data functions GG and KK. A formula for the entropy of XX is also given.Comment: 19 page

    All solutions to the relaxed commutant lifting problem

    Full text link
    A new description is given of all solutions to the relaxed commutant lifting problem. The method of proof is also different from earlier ones, and uses only an operator-valued version of a classical lemma on harmonic majorants.Comment: 15 page

    State space formulas for a suboptimal rational Leech problem II: Parametrization of all solutions

    Full text link
    For the strictly positive case (the suboptimal case), given stable rational matrix functions GG and KK, the set of all HH^\infty solutions XX to the Leech problem associated with GG and KK, that is, G(z)X(z)=K(z)G(z)X(z)=K(z) and supz1X(z)1\sup_{|z|\leq 1}\|X(z)\|\leq 1, is presented as the range of a linear fractional representation of which the coefficients are presented in state space form. The matrices involved in the realizations are computed from state space realizations of the data functions GG and KK. On the one hand the results are based on the commutant lifting theorem and on the other hand on stabilizing solutions of algebraic Riccati equations related to spectral factorizations.Comment: 28 page

    Constraining properties of GRB magnetar central engines using the observed plateau luminosity and duration correlation

    Full text link
    An intrinsic correlation has been identified between the luminosity and duration of plateaus in the X-ray afterglows of Gamma-Ray Bursts (GRBs; Dainotti et al. 2008), suggesting a central engine origin. The magnetar central engine model predicts an observable plateau phase, with plateau durations and luminosities being determined by the magnetic fields and spin periods of the newly formed magnetar. This paper analytically shows that the magnetar central engine model can explain, within the 1σ\sigma uncertainties, the correlation between plateau luminosity and duration. The observed scatter in the correlation most likely originates in the spread of initial spin periods of the newly formed magnetar and provides an estimate of the maximum spin period of ~35 ms (assuming a constant mass, efficiency and beaming across the GRB sample). Additionally, by combining the observed data and simulations, we show that the magnetar emission is most likely narrowly beamed and has \lesssim20% efficiency in conversion of rotational energy from the magnetar into the observed plateau luminosity. The beaming angles and efficiencies obtained by this method are fully consistent with both predicted and observed values. We find that Short GRBs and Short GRBs with Extended Emission lie on the same correlation but are statistically inconsistent with being drawn from the same distribution as Long GRBs, this is consistent with them having a wider beaming angle than Long GRBs.Comment: MNRAS Accepte

    Exploring the electron density in plasmas induced by extreme ultraviolet radiation in argon

    Get PDF
    The new generation of lithography tools use high energy EUV radiation which ionizes the present background gas due to photoionization. To predict and understand the long term impact on the highly delicate mirrors It is essential to characterize these kinds of EUV-induced plasmas. We measured the electron density evolution in argon gas during and just after irradiation by a short pulse of EUV light at 13.5 nm by applying microwave cavity resonance spectroscopy. Dependencies on EUV pulse energy and gas pressure have been explored over a range relevant for industrial applications. Our experimental results show that the maximum reached electron density depends linearly on pulse energy. A quadratic dependence - caused by photoionization and subsequent electron impact ionization by free electrons - is found from experiments where the gas pressure is varied. This is demonstrated by our theoretical estimates presented in this manuscript as well.Comment: submitted to J. Phys. D. 16 pages, 8 figure

    Comparison of the relative entropy of entanglement and negativity

    Full text link
    It is well known that for two qubits the upper bounds of the relative entropy of entanglement (REE) for a given concurrence as well as the negativity for a given concurrence are reached by pure states. We show that, by contrast, there are two-qubit mixed states for which the REE for some range of a fixed negativity is higher than that for pure states. Moreover, we demonstrate that a mixture of a pure entangled state and pure separable state orthogonal to it is likely to give the maximal REE. By noting that the negativity is a measure of entanglement cost under operations preserving positivity of partial transpose, our results provide an explicit example of operations such that, even though the entanglement cost for an exact preparation is the same, the entanglement of distillation of a mixed state can exceed that of pure states. This means that the entanglement manipulation via a pure state can result in a larger entanglement loss than that via a mixed state.Comment: 8 pages, 3 figure
    corecore