4,975 research outputs found

    Anomalous impurity effects in nonadiabatic superconductors

    Full text link
    We show that, in contrast with the usual electron-phonon Migdal-Eliashberg theory, the critical temperature Tc of an isotropic s-wave nonadiabatic superconductor is strongly reduced by the presence of diluted non-magnetic impurities. Our results suggest that the recently observed Tc-suppression driven by disorder in K3C60 [Phys. Rev. B vol.55, 3866 (1997)] and in Nd(2-x)CexCuO(4-delta) [Phys. Rev. B vol.58, 8800 (1998)] could be explained in terms of a nonadiabatic electron-phonon coupling. Moreover, we predict that the isotope effect on Tc has an impurity dependence qualitatively different from the one expected for anisotropic superconductors.Comment: 10 pages, euromacr.tex, europhys.sty, 6 figures. Replaced with accepted version (Europhysics Letters

    Ion implantation and low-temperature epitaxial regrowth of GaAs

    Get PDF
    Channeling and transmission electron microscopy have been used to investigate the parameters that govern the extent of damage in ion‐implanted GaAs and the crystal quality following capless furnace annealing at low temperature (∼400 °C). The implantation‐induced disorder showed a strong dependence on the implanted ion mass and on the substrate temperature during implantation. When the implantation produced a fully amorphous surface layer the main parameter governing the regrowth was the amorphous thickness. Formation of microtwins after annealing was observed when the initial amorphous layer was thicker than 400 Å. Also, the number of extended residual defects after annealing increased linearly with the initial amorphous thickness and extrapolation of that curve predicts good regrowth of very thin (<400 Å) GaAs amorphous layers produced by ion implantation. A model is presented to explain the observed features of the low‐temperature annealing of GaAs

    Pauli susceptibility of nonadiabatic Fermi liquids

    Full text link
    The nonadiabatic regime of the electron-phonon interaction leads to behaviors of some physical measurable quantities qualitatively different from those expected from the Migdal-Eliashberg theory. Here we identify in the Pauli paramagnetic susceptibility χ\chi one of such quantities and show that the nonadiabatic corrections reduce χ\chi with respect to its adiabatic limit. We show also that the nonadiabatic regime induces an isotope dependence of χ\chi, which in principle could be measured.Comment: 7 pages, 3 figures, euromacr.tex, europhys.sty. Replaced with accepted version (Europhysics Letters

    Epitaxial regrowth of thin amorphous GaAs layers

    Get PDF
    Channeling and transmission electron microscopy have been used to investigate the parameters that govern the crystal quality following capless funace annealing at low temperature (~ 400 °C) in ion-implanted GaAs. From the results obtained, we concluded that the crystal quality after annealing depends strongly on the thickness of the amorphous layer generated by ion implantation and the number of residual defects increases linearly with the thickness of the implanted layer. Single-crystal regrowth free of defects detectable by megaelectron volt He + channeling was achieved for a very thin amorphous layer (<~ 400 Å)

    Compensating impurity effect on epitaxial regrowth rate of amorphized Si

    Get PDF
    The epitaxial regrowth of ion-implanted amorphous layers on Si with partly compensated doping profiles of 11B, 75As, and 31P was studied. Single implants of these impurities are found to increase the regrowth rate at 475 and 500°C. The compensated layers with equal concentrations of 11B and 31P or 11B and 75As show a strong decrease of the regrowth whereas for the layers with overlapping 75As and 31P profiles no compensation has been found

    Anisotropic random resistor networks: a model for piezoresistive response of thick-film resistors

    Full text link
    A number of evidences suggests that thick-film resistors are close to a metal-insulator transition and that tunneling processes between metallic grains are the main source of resistance. We consider as a minimal model for description of transport properties in thick-film resistors a percolative resistor network, with conducting elements governed by tunneling. For both oriented and randomly oriented networks, we show that the piezoresistive response to an applied strain is model dependent when the system is far away from the percolation thresold, while in the critical region it acquires universal properties. In particular close to the metal-insulator transition, the piezoresistive anisotropy show a power law behavior. Within this region, there exists a simple and universal relation between the conductance and the piezoresistive anisotropy, which could be experimentally tested by common cantilever bar measurements of thick-film resistors.Comment: 7 pages, 2 eps figure

    Nonadiabatic Superconductivity and Vertex Corrections in Uncorrelated Systems

    Full text link
    We investigate the issue of the nonadiabatic superconductivity in uncorrelated systems. A local approximation is employed coherently with the weak dependence on the involved momenta. Our results show that nonadiabatic vertex corrections are never negligible, but lead to a strong suppression of TcT_c with respect to the conventional theory. This feature is understood in terms of the momentum-frequency dependence of the vertex function. In contrast to strongly correlated systems, where the small q{\bf q}-selection probes the positive part of vertex function, vertex corrections in uncorrelated systems are essentially negative resulting in an effective reduction of the superconducting pairing. Our analysis shows that vertex corrections in nonadiabatic regime can be never disregarded independently of the degree of electronic correlation in the system.Comment: 4 pages, 3 eps fig

    A Winged Zorotypus in Miocene Amber from the Dominician Republic (Zoraptera: Zorotypidae), with Discussion on Relationships of and within the Order

    Get PDF
    A new fossil zorapteran is described and figured in Miocene Dominican amber. The specimen is the first winged Zorotypus fossil, and is described as Zorotypus goeleti n.sp. The species is distinguished from the only other fossil zorapteran, Z. palaeus also in Dominican amber, as well as an extant species to which it appears most similar, Z. snyderi. The new fossil is significant in the possession of segmented cerci, a plesiomorphic character unique for the order. The classification of the order is briefly summarized and genera proposed by Kukalová - Peck and Peck (1993) and Chao and Chen (2000) are new ly synonymized under Zorotypus. Phylogenetic affinities within Zoraptera and of the order among other lower Neoptera are briefly discussed. The order is considered to be most closely allied to the webspinners, order Embiidina

    Nonadiabatic Pauli susceptibility in fullerene compounds

    Full text link
    Pauli paramagnetic susceptibility χ\chi is unaffected by the electron-phonon interaction in the Migdal-Eliashberg context. Fullerene compounds however do not fulfill the adiabatic assumption of Migdal's theorem and nonadiabatic effects are expected to be relevant in these materials. In this paper we investigate the Pauli spin susceptibility in nonadiabatic regime by following a conserving approach based on Ward's identity. We find that a sizable renormalization of χ\chi due to electron-phonon coupling appears when nonadiabatic effects are taken into account. The intrinsic dependence of χ\chi on the electron-phonon interaction gives rise to a finite and negative isotope effect which could be experimentally detected in fullerides. In addition, we find an enhancement of the spin susceptibility with temperature increasing, in agreement with the temperature dependence of χ\chi observed in fullerene compounds. The role of electronic correlation is also discussed.Comment: Revtex, 10 pages, 8 figures include
    corecore