3 research outputs found

    Comment on the paper I. M. Suslov: Finite Size Scaling from the Self Consistent Theory of Localization

    Full text link
    In the recent paper [I.M.Suslov, JETP {\bf 114} (2012) 107] a new scaling theory of electron localization was proposed. We show that numerical data for the quasi-one dimensional Anderson model do not support predictions of this theory.Comment: Comment on the paper arXiv 1104.043

    Evaluation of institut georges lopez-1 preservation solution in pig pancreas transplantation: A pilot study

    No full text
    © 2014 by Lippincott Williams & Wilkins. Background. Institut Georges Lopez-1 preservation solution (IGL-1) is an emerging extracellular-type electrolyte solution, low in viscosity, containing polyethylene glycol 35 as a colloid. Although IGL-1 has shown beneficial outcomes in kidney and liver preservation, this pilot study is the first to evaluate the efficacy of IGL-1 in pancreas transplantation (PT) compared with the University of Wisconsin solution (UW). Methods. Sixteen Landrace pigs underwent allogeneic PT with 16 hr of cold ischemia. Grafts were preserved with IGL-1 (n=8) or UW (n=8). No immunosuppression was administered. We analyzed graft function, the acute-phase response, and oxidative stress in the pancreatic graft monitoring membrane fluidity and lipid peroxidation. Results. All eight grafts with IGL-1, but only six with UW, were functioning. Graft failures with UW resulted from graft thrombosis. There were no differences between the two solutions in the number of normoglycemic days (IGL-1: 11.5T6.2 versus UW: 8.5T4.4 days, P=0.1357), nor in lipid peroxidation during 16-hr cold ischemia (P=0.672), or reperfusion (P=0.185), but IGL-1 prevented changes in membrane fluidity after reperfusion when compared with UW (P=0.026). Conclusion. IGL-1 offered the same degree of safety and effectiveness as UW in our model of pig PT with 16 hr of cold ischemia.Peer Reviewe
    corecore