9,412 research outputs found

    Analysis of melt-textured YBCO with nanoscale inclusions

    Get PDF
    Recently, particles with the chemical composition Y2Ba 4CuMOx where M U, Nb, Zr, etc., and sizes in the range of 50 - 200 nm have been generated within the YBCO matrix of bulk, melt-processed superconductors in order to serve as effective flux pinning sites. By means of AFM and electron backscatter diffraction (EBSD) measurements, we analyse the spatial distribution and the size distribution of these nanoparticles within the superconducting YBCO matrix

    Investigation of grain orientations of melt-textured HTSC with addition of uranium oxide, Y2O3 and Y2BaCuO5

    Get PDF
    Local grain orientations were studied in melt-textured YBCO samples processed with various amounts of depleted uranuim oxide (DU) and Y 2O3 by means of electron backscatter diffraction (EBSD) analysis. The addition of DU leads to the formation of Ucontaining nanoparticles (Y2Ba4CuUOx) with sizes of around 200 nm, embedded in the superconducting Y-123 matrix. The orientation of the Y 2BaCuO5 (Y-211) particles, which are also present in the YBCO bulk microstructure, is generally random as is the case in other melttextured Y-123 samples. The presence of Y-211 particles, however, also affects the orientation of the Y-123 matrix in these samples

    EBSD characterisation of Y2Ba4CuUOx phase in melttextured YBCO with addition of depleted uranium oxide

    Get PDF
    Melt-textured YBCO samples processed with added Y2O3 and depleted uranium oxide (DU) contain nano-particles, which have been identified previously as Y2Ba4CuUOx (U-411). This phase has a cubic unit cell, which is clearly distinct from the orthorhombic Y-123 and Y-211 phases within the YBCO system. In samples with a high amount of DU addition (0.8 wt-% DU), U-2411 particles have sizes between 200 nm and several νm, so identification of the Kikuchi patterns of this phase becomes possible. Together with a parallel EDX analysis, the particles embedded in the Y-123 matrix can be identified unambiguously. In this way, a three-phase EBSD scan becomes possible, allowing also the identification of nanometre-sized particles in the sample microstructure

    Collective treatment of High Energy Thresholds in SUSY - GUTs

    Full text link
    Supersymmetric GUTs are the most natural extension of the Standard model unifying electroweak and strong forces. Despite their indubitable virtues, among these the gauge coupling unification and the quantization of the electric charge, one of their shortcomings is the large number of parameters used to describe the high energy thresholds (HET), which are hard to handle. We present a new method according to which the effects of the HET, in any GUT model, can be described by fewer parameters that are randomly produced from the original set of the parameters of the model. In this way, regions favoured by the experimental data are easier to locate, avoiding a detailed and time consuming exploration of the parameter space, which is multidimensional even in the most economic unifying schemes. To check the efficiency of this method, we directly apply it to a SUSY SO(10) GUT model in which the doublet-triplet splitting is realized through the Dimopoulos-Wilczek mechanism. We show that the demand of gauge coupling unification, in conjunction with precision data, locates regions of the parameter space in which values of the strong coupling \astrong are within the experimental limits, along with a suppressed nucleon decay, mediated by a higgsino driven dimension five operators, yielding lifetimes that are comfortably above the current experimental bounds. These regions open up for values of the SUSY breaking parameters m_0, M_1/2 < 1 TeV being therefore accessible to LHC.Comment: 21 pages, 8 figures, UA-NPPS/BSM-10/02 (added

    Characterization of nano-composite M-2411/Y-123 thin films by electron backscatter diffraction and in-field critical current measurements

    Get PDF
    Thin films of nano-composite Y-Ba-Cu-O (YBCO) superconductors containing nano-sized, non-superconducting particles of Y2Ba 4CuMOx (M-2411 with M = Ag and Nb) have been prepared by the PLD technique. Electron backscatter diffraction (EBSD) has been used to analyze the crystallographic orientation of nano-particles embedded in the film microstructure. The superconducting YBa2Cu3O7 (Y-123) phase matrix is textured with a dominant (001) orientation for all samples, whereas the M-2411 phase exhibits a random orientation. Angular critical current measurements at various temperature (T) and applied magnetic field (B) have been performed on thin films containing different concentration of the M-2411 second phase. An increase in critical current density J c at T < 77 K and B < 6 T is observed for samples with low concentration of the second phase (2 mol % M-2411). Films containing 5 mol % Ag-2411 exhibit lower Jc than pure Y-123 thin films at all fields and temperatures. Samples with 5 mol % Nb-2411 show higher Jc(B) than phase pure Y-123 thin films for T < 77 K

    Natural Gauge Hierarchy in SO(10)

    Full text link
    It is shown that a natural gauge hierarchy and doublet-triplet splitting can be achieved in SO(10) using the Dimopoulos-Wilczek mechanism. Artificial cancellations (fine-tuning) and arbitrary forms of the superpotential are avoided, the superpotential being the most general compatible with a symmetry. It is shown by example that the Dimopoulos-Wilczek mechanism can be protected against the effects of higher-dimension operators possibly induced by Planck-scale physics. Natural implementation of the mechanism leads to an automatic Peccei-Quinn symmetry. The same local symmetries that would protect the gauge hierarchy against Planck-scale effects tend to protect the axion also. It is shown how realistic quark and lepton masses might arise in this framework. It is also argued that ``weak suppression'' of proton decay can be implemented more economically than can ``strong suppression'', offering some grounds to hope (in the context of SO(10)) that proton decay could be seen at Superkamiokande.Comment: 26 pages in plain LaTeX, 5 figures available on request, BA-94-0

    Growth rate of YBCO single grains containing Y-2411(M)

    Get PDF
    Y-Ba-Cu-O (YBCO) single grains have the potential to generate large trapped magnetic fields for a variety of engineering applications, and research on the processing and properties of this material has attracted world-wide interest. In particular, the introduction of flux pinning centres to the large grain microstructure to improve its current density, Jc, and hence trapped field, has been investigated extensively over the past decade. Y 2Ba4CuMOx [Y-2411(M)], where M = Nb, Ta, Mo, W, Ru, Zr, Bi and Ag, has been reported to form particularly effective flux pinning centres in YBCO due primarily to its ability to exist as nano-size inclusions in the superconducting phase matrix. However, the addition of the Y-2411(M) phase to the precursor composition complicates the melt-processing of single grains. We report an investigation of the growth rate of single YBCO grains containing Y-2411(Bi) phase inclusions and Y2O3. The superconducting properties of these large single grains have been measured specifically to investigate the effect of Y2O3 on broadening the growth window of these materials

    Eliminating the d=5 proton decay operators from SUSY GUTs

    Get PDF
    A general analysis is made of the question whether the d=5 proton decay operators coming from exchange of colored Higgsinos can be completely eliminated in a natural way in supersymmetric grand unified models. It is shown that they can indeed be in SO(10) while at the same time naturally solving the doublet-triplet splitting problem, having only two light Higgs doublets, and using no more than a single adjoint Higgs field. Accomplishing all of this requires that the vacuum expectation value of the adjoint Higgs field be proportional to the generator I_{3R} rather than to B-L, as is usually assumed. It is shown that such models can give realistic quark and lepton masses. We also point out a new mechanism for solving the \mu problem in the context of SO(10) SUSY GUTs.Comment: 24 pages in LaTeX, with 3 figure

    Supersymmetry, local horizontal unification, and a solution to the flavor puzzle

    Get PDF
    Supersymmetric gauge models with local horizontal symmetries are known to generate large flavor changing neutral current effects induced by supersymmetry breaking D-terms. We show how the presence of a U(1) gauge symmetry solves this problem. We then construct a realistic gauge model with SU(2)_H x U(1)_H as the local horizontal symmetry and suggest that the U(1)_H factor may be identified with the anomalous U(1) induced by string compactification. This model explains the observed hierarchies among the quark masses and mixing angles, accommodates naturally the solar and atmospheric neutrino data, and provides simultaneously a solution to the supersymmetric flavor problem. The model can be excluded if the rare decay \mu --> e \gamma is not observed in the current round of experiments.Comment: 10 pages in RevTe
    corecore