570 research outputs found

    Unification Theory of Angular Magnetoresistance Oscillations in Quasi-One-Dimensional Conductors

    Full text link
    We present a unification theory of angular magnetoresistance oscillations, experimentally observed in quasi-one-dimensional organic conductors, by solving the Boltzmann kinetic equation in the extended Brillouin zone. We find that, at commensurate directions of a magnetic field, resistivity exhibits strong minima. In two limiting cases, our general solution reduces to the results, previously obtained for the Lebed Magic Angles and Lee-Naughton-Lebed oscillations. We demonstrate that our theoretical results are in good qualitative and quantitative agreement with the existing measurements of resistivity in (TMTSF)2_2ClO4_4 conductor.Comment: 6 pages, 2 figure

    Interference Commensurate Oscillations in Q1D Conductors

    Full text link
    We suggest an analytical theory to describe angular magnetic oscillations recently discovered in quasi-one-dimensional conductor (TMTSF)2PF6 [see Phys. Rev. B, 57, 7423 (1998)] and define the positions of the oscillation minima. The origin of these oscillations is related to interference effects resulting from an interplay of quasi-periodic and periodic ("commensurate") electron trajectories in an inclined magnetic field. We reproduce via calculations existing experimental data and predict some novel effects.Comment: 10 pages, 2 figure

    Magic angle effects in the interlayer magnetoresistance of quasi-one-dimensional metals due to interchain incoherence

    Get PDF
    The dependence of the magnetoresistance of quasi-one-dimensional metals on the direction of the magnetic field show dips when the field is tilted at the so called magic angles determined by the structural dimensions of the materials. There is currently no accepted explanation for these magic angle effects. We present a possible explanation. Our model is based on the assumption that, the intralayer transport in the second most conducting direction has a small contribution from incoherent electrons. This incoherence is modelled by a small uncertainty in momentum perpendicular to the most conducting (chain) direction. Our model predicts the magic angles seen in interlayer transport measurements for different orientations of the field. We compare our results to predictions by other models and to experiment.Comment: 7 pages, 3 figures, Submitted To Phys. Rev.

    Soliton Wall Superlattice in Quasi-One-Dimensional Conductor (Per)2Pt(mnt)2

    Full text link
    We suggest a model to explain the appearance of a high resistance high magnetic field charge-density-wave (CDW) phase, discovered by D. Graf et al. [Phys. Rev. Lett. v. 93, 076406 (2004)] in (Per)2Pt(mnt)2. In particular, we show that the Pauli spin-splitting effects improve the nesting properties of a realistic quasi-one-dimensional electron spectrum and, therefore, a high resistance Peierls CDW phase is stabilized in high magnetic fields. In low and very high magnetic fields, a periodic soliton wall superlattice (SWS) phase is found to be a ground state. We suggest experimental studies of the predicted phase transitions between the Peierls and SWS CDW phases in (Per)2Pt(mnt)2 to discover a unique SWS phase.Comment: 10 pages, 3 figures. Submitted to Physical Review Letters (February 19, 2007

    Interference Effects Due to Commensurate Electron Trajectories and Topological Crossovers in (TMTSF)2ClO4

    Full text link
    We report angle-dependent magnetoresistance measurements on (TMTSF)2ClO4 that provide strong support for a new macroscopic quantum phenomenon, the interference commensurate (IC) effect, in quasi-one dimensional metals. In addition to observing rich magnetoresistance oscillations, and fitting them with one-electron calculations, we observe a clear demarcation of field-dependent behavior at local resistance minima and maxima (versus field angle). Anticipated by a theoretical treatment of the IC effect in terms of Bragg reflections in the extended Brillouin zone, this behavior results from 1D-2D topological crossovers of electron wave functions as a function of field orientation.Comment: 14 page

    Paramagnetic Intrinsic Meissner Effect in Layered Superconductors

    Full text link
    Free energy of a layered superconductor with ξ⊥<d\xi_{\perp} < d is calculated in a parallel magnetic field by means of the Gor'kov equations, where ξ⊥\xi_{\perp} is a coherence length perpendicular to the layers and dd is an inter-layer distance. The free energy is shown to differ from that in the textbook Lawrence-Doniach model at high fields, where the Meissner currents are found to create an unexpected positive magnetic moment due to shrinking of the Cooper pairs "sizes" by a magnetic field. This paramagnetic intrinsic Meissner effect in a bulk is suggested to detect by measuring in-plane torque, the upper critical field, and magnetization in layered organic and high-Tc_c superconductors as well as in superconducting superlattices.Comment: Submitted to Physical Review Letters on February 21st 200

    Baryon Magnetic Moments in Alternate 1/N_c Expansions

    Full text link
    Recent work shows not only the necessity of a 1/N_c expansion to explain the observed mass spectrum of the lightest baryons, but also that at least two distinct large N_c expansions, in which quarks transform under either the color fundamental or the two-index antisymmetric representation of SU(N_c), work comparably well. Here we show that the baryon magnetic moments do not support this ambivalence; they strongly prefer the color-fundamental 1/N_c expansion, providing experimental evidence that nature decisively distinguishes among 1/N_c expansions for this observable.Comment: 18 pages, ReVTe

    Quantum Limit in a Parallel Magnetic Field in Layered Conductors

    Full text link
    We show that electron wave functions in a quasi-two-dimensional conductor in a parallel magnetic field are always localized on conducting layers. Wave functions and electron spectrum in a quantum limit, where the "sizes" of quasi-classical electron orbits are of the order of nano-scale distances between the layers, are determined. AC infrared measurements to investigate Fermi surfaces and to test Fermi liquid theory in Q2D organic and high-Tc materials in high magnetic fields, H = 10-45 T, are suggested.Comment: 9 pages, 2 figures; Submitted to Physical Review Letter
    • …
    corecore