70 research outputs found

    Isolation of rapid growing mycobacteria from soil and water in Iran

    Get PDF
    A total of 350 soil samples were collected from different part of Uremia city and suburbs. We used 3% sodium lauryl sulfate and 1% NaOH for decontamination of soil samples. Of 350 samples, mycobacteria were isolated from 65 (18.3%) specimens. Mycobacterium fortuitum with 18(5.14) strains yielded the highest frequency of isolation. The other isolates were: Mycobacterium peregrinum 11(3.14%), Mycobacterium flvescens 10 (2.85%), Mycobacterium chelonae 6 (1.71%), Mycobacterium mucogenicum 6(1.71%), Mycobacterium thermoresistable 4(1.14%), Mycobacterium abscessus 3 (0.85%), Mycobacterium neoaurum 2(0.57%), Mycobacterium smegmatis 2 (0.57%) and M. fortuitum third biovalant complex 3 (0.85%). The mean pH of soil was 7.89 ± 0.379 (max 8.5, min 7.5). Our data showed an abundant occurrence of mycobacteria in low pH (P value = 0001). We also collected 120 water samples from rivers, brooks and drinking water. Water samples decontaminated were by adding cetylpyridinium chloride (CPC) to give final concentration of 0.05%. Mycobacteria isolated from 12 water samples. The predominant isolated species were M. fortuitum and Mycobacterium cheloni. The majorityisolates were from brooks and surface waters

    Hom-Lie color algebra structures

    Full text link
    This paper introduces the notion of Hom-Lie color algebra, which is a natural general- ization of Hom-Lie (super)algebras. Hom-Lie color algebras include also as special cases Lie (super) algebras and Lie color algebras. We study the homomorphism relation of Hom-Lie color algebras, and construct new algebras of such kind by a \sigma-twist. Hom-Lie color admissible algebras are also defined and investigated. They are finally classified via G-Hom-associative color algebras, where G is a subgroup of the symmetric group S_3.Comment: 16 page

    FracDetect: A novel algorithm for 3D fracture detection in digital fractured rocks

    Full text link
    Fractures have a governing effect on the physical properties of fractured rocks, such as permeability. Accurate representation of 3D fractures is, therefore, required for precise analysis of digital fractured rocks. However, conventional segmentation methods fail to detect and label the fractures with aperture sizes near or below the resolution of 3D micro-computed tomographic (micro-CT) images, which are visible in the greyscale images, and where greyscale intensity convolution between different phases exists. In addition, conventional methods are highly subjective to user interpretation. Herein, a novel algorithm for the automatic detection of fractures from greyscale 3D micro-CT images is proposed. The algorithm involves a low-level early vision stage, which identifies potential fractures, followed by a high-level interpretative stage, which enforces planar continuity to reject false positives and more reliably extract planar fractures from digital rock images. A manually segmented fractured shale sample was used as the groundtruth, with which the efficacy of the algorithm in 3D fracture detection was validated. Following this, the proposed and conventional methods were applied to detect fractures in digital fractured coal and shale samples. Based on these analyses, the impact of fracture detection accuracy on the analysis of fractured rocks' physical properties was inferred

    Microbiologically influenced corrosion of cable bolts in underground coal mines: The effect of Acidithiobacillus ferrooxidans

    Full text link
    Reports on corrosion failure of cable bolts, used in mining and civil industries, have been increasing in the past two decades. The previous studies found that pitting corrosion on the surface of a cable bolt can initiate premature failure of the bolt. In this study, the role of Acidithiobacillus ferrooxidans (A. ferrooxidans) bacterium in the occurrence of pitting corrosion in cable bolts was studied. Stressed coupons, made from the wires of cable bolts, were immersed in testing bottles containing groundwater collected from an underground coal mine and a mixture of A. ferrooxidans and geomaterials. It was observed that A. ferrooxidans caused pitting corrosion on the surface of cable bolts in the near-neutral environment. The presence of geomaterials slightly affected the pH of the environment; however, it did not have any significant influence on the corrosion activity of A. ferrooxidans. This study suggests that the common bacterium A. ferrooxidans found in many underground environments can be a threat to cable bolts’ integrity by creating initiation points for other catastrophic failures such as stress corrosion cracking

    Pore Scale Characterisation of Coal: An Unconventional Challenge

    Full text link
    oal seam gas is an unconventional resource for natural gas that is becoming popular due to its environmental benefit and abundance. This paper reviews recent developments on the pore-scale characterisation of coal from coal seam gas reserviors. The development of micro-computed tomography (micro-CT) imaging has enabled for the 3D characterization of the fracture system in coals. This provides detailed insights into understanding flow in these unconventional reservoirs. A novel image calibration method in which the skeleton of the fracture system is obtained from micro-CT imaging while the fracture apertures are measured from scanning electron microscopy (SEM) is described. We also show the application of micro-CT imaging for studying diffusion processes in ultralow permeability matrices and discuss the incorporation of the data into calculations of gas production from unconventional reservoirs. The extraction of statistical information from micro-CT images to reconstruct coal cleat system are also demonstrated. This technique allows for preserving the key attributes of the cleat system while the generated fracture network is not limited in terms of size nor resolution. The developments of microfluidic methods for understanding the complex displacement mechanisms in coal seams are also described. These low-cost experimental methods can provide unique information about the displacement mechanisms occurring during gas production from coal seam reservoirs. Variation of coal contact angle with pressure is analysed and results demonstrate important wettability processes that occur in coal seams. We describe numerical methods for prediction of petrophysical properties from micro-CT images of coal and discuss the associated limitations when dealing with coal samples. The paper concludes by addressing the challenges faced when characterising coal at the micro-scale and approaches for population of coal data into reservoir simulators for relaible prediction of reservoir behaviour during gas production as well as CO2 sequestration in coalbeds

    Quality gap of educational services in viewpoints of students in Hormozgan University of medical sciences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Higher education is growing fast and every day it becomes more and more exposed to globalization processes. The aim of this study was to determine the quality gap of educational services by using a modified SERVQUAL instrument among students in Hormozgan University of Medical Sciences.</p> <p>Methods</p> <p>A cross-sectional study was carried out at Hormozgan University of Medical Sciences in 2007. In this study, a total of 300 students were selected randomly and asked to complete a questionnaire that was designed according to SERVQUAL methods. This questionnaire measured students' perceptions and expectations in five dimensions of service that consists of assurance, responsiveness, empathy, reliability and tangibles. The quality gap of educational services was determined based on differences between students' perceptions and expectations.</p> <p>Results</p> <p>The results demonstrated that in each of the five SERVQUAL dimensions, there was a negative quality gap. The least and the most negative quality gap means were in the reliability (-0.71) and responsiveness (-1.14) dimensions respectively. Also, there were significant differences between perceptions and expectations of students in all of the five SERVQUAL dimensions (p < 0.001).</p> <p>Conclusion</p> <p>Negative quality gaps mean students' expectations exceed their perceptions. Thus, improvements are needed across all five dimensions.</p

    Duckweed (Lemna minor) as a Model Plant System for the Study of Human Microbial Pathogenesis

    Get PDF
    BACKGROUND: Plant infection models provide certain advantages over animal models in the study of pathogenesis. However, current plant models face some limitations, e.g., plant and pathogen cannot co-culture in a contained environment. Development of such a plant model is needed to better illustrate host-pathogen interactions. METHODOLOGY/PRINCIPAL FINDINGS: We describe a novel model plant system for the study of human pathogenic bacterial infection on a large scale. This system was initiated by co-cultivation of axenic duckweed (Lemna minor) plants with pathogenic bacteria in 24-well polystyrene cell culture plate. Pathogenesis of bacteria to duckweed was demonstrated with Pseudomonas aeruginosa and Staphylococcus aureus as two model pathogens. P. aeruginosa PAO1 caused severe detriment to duckweed as judged from inhibition to frond multiplication and chlorophyll formation. Using a GFP-marked PAO1 strain, we demonstrated that bacteria colonized on both fronds and roots and formed biofilms. Virulence of PAO1 to duckweed was attenuated in its quorum sensing (QS) mutants and in recombinant strains overexpressing the QS quenching enzymes. RN4220, a virulent strain of S. aureus, caused severe toxicity to duckweed while an avirulent strain showed little effect. Using this system for antimicrobial chemical selection, green tea polyphenols exhibited inhibitory activity against S. aureus virulence. This system was further confirmed to be effective as a pathogenesis model using a number of pathogenic bacterial species. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that duckweed can be used as a fast, inexpensive and reproducible model plant system for the study of host-pathogen interactions, could serve as an alternative choice for the study of some virulence factors, and could also potentially be used in large-scale screening for the discovery of antimicrobial chemicals
    • …
    corecore