139 research outputs found
One-loop self-energy correction in a strong binding field
A new scheme for the numerical evaluation of the one-loop self-energy
correction to all orders in Z \alpha is presented. The scheme proposed inherits
the attractive features of the standard potential-expansion method but yields a
partial-wave expansion that converges more rapidly than in the other methods
reported in the literature.Comment: 8 pages, 4 table
QED calculation of the 2p3/2-2p1/2 transition energy in five-electron ion of argon
We perform ab initio QED calculation of the (1s)^2(2s)^22p_{3/2} -
(1s)^2(2s)^22p_{1/2} transition energy in the five-electron ion of argon. The
calculation is carried out by perturbation theory starting with an effective
screening potential approximation. Four different types of the screening
potentials are considered. The rigorous QED calculations of the two
lowest-order QED and electron-correlation effects are combined with approximate
evaluations of the third- and higher-order electron-correlation contributions.
The theoretical value for the wavelength obtained amounts to 441.261(70) (nm,
air) and perfectly agrees with the experimental one, 441.2559(1) (nm, air).Comment: 10 pages, 3 figures, 1 tabl
Evidence for the absence of regularization corrections to the partial-wave renormalization procedure in one-loop self energy calculations in external fields
The equivalence of the covariant renormalization and the partial-wave
renormaliz ation (PWR) approach is proven explicitly for the one-loop
self-energy correction (SE) of a bound electron state in the presence of
external perturbation potentials. No spurious correctio n terms to the
noncovariant PWR scheme are generated for Coulomb-type screening potentia ls
and for external magnetic fields. It is shown that in numerical calculations of
the SE with Coulombic perturbation potential spurious terms result from an
improper treatment of the unphysical high-energy contribution. A method for
performing the PWR utilizing the relativistic B-spline approach for the
construction of the Dirac spectrum in external magnetic fields is proposed.
This method is applied for calculating QED corrections to the bound-electron
-factor in H-like ions. Within the level of accuracy of about 0.1% no
spurious terms are generated in numerical calculations of the SE in magnetic
fields.Comment: 22 pages, LaTeX, 1 figur
One-loop self-energy correction to the 1s and 2s hyperfine splitting in H-like systems
The one-loop self-energy correction to the hyperfine splitting of the 1s and
2s levels in H-like low-Z atoms is evaluated to all orders in Z\alpha. The
results are compared to perturbative calculations. The residual higher-order
contribution is evaluated. Implications to the specific difference of the
hyperfine structure intervals 8\Delta \nu_2 - \Delta \nu_1 in He^+ are
investigated.Comment: 17 pages, RevTeX, 3 figure
Evaluation of the low-lying energy levels of two- and three-electron configurations for multi-charged ions
Accurate QED evaluations of the one- and two-photon interelectron interaction
for low lying two- and three-electron configurations for ions with nuclear
charge numbers are performed. The three-photon interaction is
also partly taken into account. The Coulomb gauge is employed. The results are
compared with available experimental data and with different calculations. A
detailed investigation of the behaviour of the energy levels of the
configurations , near
the crossing points Z=64 and Z=92 is carried out. The crossing points are
important for the future experimental search for parity nonconserving (PNC)
effects in highly charged ions
- …