794 research outputs found

    The Ever Changing Circumstellar Nebula Around UW Centauri

    Get PDF
    We present new images of the reflection nebula surrounding the R Coronae Borealis Star, UW Cen. This nebula, first detected in 1990, has changed its appearance significantly. At the estimated distance of UW Cen, this nebula is approximately 0.6 ly in radius so the nebula cannot have physically altered in only 8 years. Instead, the morphology of the nebula appears to change as different parts are illuminated by light from the central star modulated by shifting thick dust clouds near its surface. These dust clouds form and dissipate at irregular intervals causing the well-known declines in the R Coronae Borealis (RCB) stars. In this way, the central star acts like a lighthouse shining through holes in the dust clouds and lighting up different portions of the nebula. The existence of this nebula provides clues to the evolutionary history of RCB stars possibly linking them to the Planetary Nebulae and the final helium shell flash stars.Comment: To be published in ApJ Letters. 5 pages, 3 figures (2 in color

    Prediction of buried mine-like target radar signatures using wideband electromagnetic modeling

    Get PDF
    ABSTRACT Current ground penetrating radars (GPR) have been tested for land mine detection, but they have generally been costly and have poor performance. Comprehensive modeling and experimentation must be done to predict the electromagnetic (EM) signatures of mines to access the effect of clutter on the EM signature of the mine, and to understand the merit and limitations of using radar for various mine detection scenarios. This modeling can provide a basis for advanced radar design and detection techniques leading to superior performance. Lawrence Livermore National Laboratory (LLNL) has developed a radar technology that when combined with comprehensive modeling and detection methodologies could be the basis of an advanced mine detection system. Micropower Impulse Radar (MIR) technology exhibits a combination of properties, including wideband operation, extremely low power consumption, extremely small size and low cost, array configurability, and noise encoded pulse generation. LLNL is in the process of developing an "optimal" processing algorithm to use with the MIR sensor. In this paper, we use classical numerical models to obtain the signature of mine-like targets and examine the effect of surface roughness on the reconstructed signals. These results are then qualitatively compared to experimental data

    Three-Dimensional Kinematics of Hummingbird Flight

    Get PDF
    Hummingbirds are specialized for hovering flight, and substantial research has explored this behavior. Forward flight is also important to hummingbirds, but the manner in which they perform forward flight is not well documented. Previous research suggests that hummingbirds increase flight velocity by simultaneously tilting their body angle and stroke-plane angle of the wings, without varying wingbeat frequency and upstroke: downstroke span ratio. We hypothesized that other wing kinematics besides stroke-plane angle would vary in hummingbirds. To test this, we used synchronized highspeed (500·Hz) video cameras and measured the threedimensional wing and body kinematics of rufous hummingbirds (Selasphorus rufus, 3·g, N=5) as they flew at velocities of 0–12·m·s–1 in a wind tunnel. Consistent with earlier research, the angles of the body and the stroke plane changed with velocity, and the effect of velocity on wingbeat frequency was not significant. However, hummingbirds significantly altered other wing kinematics including chord angle, angle of attack, anatomical strokeplane angle relative to their body, percent of wingbeat in downstroke, wingbeat amplitude, angular velocity of the wing, wingspan at mid-downstroke, and span ratio of the wingtips and wrists. This variation in bird-centered kinematics led to significant effects of flight velocity on the angle of attack of the wing and the area and angles of the global stroke planes during downstroke and upstroke. We provide new evidence that the paths of the wingtips and wrists change gradually but consistently with velocity, as in other bird species that possess pointed wings. Although hummingbirds flex their wings slightly at the wrist during upstroke, their average wingtip–span ratio of 93% revealed that they have kinematically ‘rigid’ wings compared with other avian species

    The epsilon Chamaeleontis young stellar group and the characterization of sparse stellar clusters

    Full text link
    We present the outcomes of a Chandra X-ray Observatory snapshot study of five nearby Herbig Ae/Be (HAeBe) stars which are kinematically linked with the Oph-Sco-Cen Association (OSCA). Optical photometric and spectroscopic followup was conducted for the HD 104237 field. The principal result is the discovery of a compact group of pre-main sequence (PMS) stars associated with HD 104237 and its codistant, comoving B9 neighbor epsilon Chamaeleontis AB. We name the group after the most massive member. The group has five confirmed stellar systems ranging from spectral type B9-M5, including a remarkably high degree of multiplicity for HD 104237 itself. The HD 104237 system is at least a quintet with four low mass PMS companions in nonhierarchical orbits within a projected separation of 1500 AU of the HAeBe primary. Two of the low-mass members of the group are actively accreting classical T Tauri stars. The Chandra observations also increase the census of companions for two of the other four HAeBe stars, HD 141569 and HD 150193, and identify several additional new members of the OSCA. We discuss this work in light of several theoretical issues: the origin of X-rays from HAeBe stars; the uneventful dynamical history of the high-multiplicity HD 104237 system; and the origin of the epsilon Cha group and other OSCA outlying groups in the context of turbulent giant molecular clouds. Together with the similar eta Cha cluster, we paint a portrait of sparse stellar clusters dominated by intermediate-mass stars 5-10 Myr after their formation.Comment: Accepted for publication in the Astrophysical Journal. 32 pages and 7 figure

    Evolution of 21st Century Sea Level Rise Projections

    Get PDF
    The modern era of scientific global‐mean sea level rise (SLR) projections began in the early 1980s. In subsequent decades, understanding of driving processes has improved, and new methodologies have been developed. Nonetheless, despite more than 70 studies, future SLR remains deeply uncertain. To facilitate understanding of the historical development of SLR projections and contextualize current projections, we have compiled a comprehensive database of 21st century global SLR projections. Although central estimates of 21st century global‐mean SLR have been relatively consistent, the range of projected SLR has varied greatly over time. Among studies providing multiple estimates, the range of upper projections shrank from 1.3–1.8 m during the 1980s to 0.6–0.9 m in 2007, before expanding again to 0.5–2.5 m since 2013. Upper projections of SLR from individual studies are generally higher than upper projections from the Intergovernmental Panel on Climate Change, potentially due to differing percentile bounds or a predisposition of consensus‐based approaches toward relatively conservative outcomes.Plain Language SummaryIn spite of more than 35 years of research, and over 70 individual studies, the upper bound of future global‐mean sea level rise (SLR) remains deeply uncertain. In an effort to improve understanding of the history of the science behind projected SLR, we present and analyze the first comprehensive database of 21st century global‐mean SLR projections. Results show a reduction in the range of SLR projections from the first studies through the mid‐2000s that has since reversed. In addition, results from this work indicate a tendency for Intergovernmental Panel on Climate Change reports to err on the side of least drama—a conservative bias that could potentially impede risk management.Key PointsWe present the first comprehensive database of 21st century global sea level rise projectionsUpper estimates of sea level rise in 2100 are often higher than upper bounds found in Intergovernmental Panel on Climate Change reportsA comparison of recent global sea level rise projections reveals far greater agreement among studies in 2050 compared to 2100Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147167/1/eft2484_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/147167/2/eft2484.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/147167/3/eft2_84-sup-0001-2018EF000991-Figs01.pd

    Morphological and kinematic basis of the hummingbird flight stroke: scaling of flight muscle transmission ratio

    Get PDF
    Hummingbirds (Trochilidae) are widely known for their insect-like flight strokes characterized by high wing beat frequency, small muscle strains and a highly supinated wing orientation during upstroke that allows for lift production in both halves of the stroke cycle. Here, we show that hummingbirds achieve these functional traits within the limits imposed by a vertebrate endoskeleton and muscle physiology by accentuating a wing inversion mechanism found in other birds and using long-axis rotational movement of the humerus. In hummingbirds, long-axis rotation of the humerus creates additional wing translational movement, supplementing that produced by the humeral elevation and depression movements of a typical avian flight stroke. This adaptation increases the wing-to-muscle-transmission ratio, and is emblematic of a widespread scaling trend among flying animals whereby wing-to-muscle-transmission ratio varies inversely with mass, allowing animals of vastly different sizes to accommodate aerodynamic, biomechanical and physiological constraints on muscle-powered flapping flight

    Formation of star clusters in the LMC and SMC. I. Preliminary results on cluster formation from colliding gas clouds

    Full text link
    We demonstrate that single and binary star clusters can be formed during cloud-cloud collisions triggered by the tidal interaction between the Large and Small Magellanic clouds. We run two different sets of self-consistent numerical simulations which show that compact, bound star clusters can be formed within the centers of two colliding clouds due to strong gaseous shocks, compression, and dissipation, providing the clouds have moderately large relative velocities (10-60 km s−1^{-1}). The impact parameter determines whether the two colliding clouds become a single or a binary cluster. The star formation efficiency in the colliding clouds is dependent upon the initial ratio of the relative velocity of the clouds to the sound speed of the gas. Based on these results, we discuss the observed larger fraction of binary clusters, and star clusters with high ellipticity, in the Magellanic clouds.Comment: 22 pages, 5 figures (two color: fig2 and fig5), accepted in Ap
    • 

    corecore