172 research outputs found

    COLOR AND SPECTRAL CHARACTERISTICS OF WHITE LIGHT EMITTING DIODES AND THEIR VARIATION DURING AGING

    Get PDF
    The relation between numerical values of photometric characteristics (total luminous flux TLF, correlated color temperature CCT, color rendering index CRI) of white light emitting diodes (LED) and the variation of the spectral shape of their radiation during aging has been investigated. All the measurements were made on internationally adopted test methods, taking into account environmental conditions, electrical parameters and evaluated measurement uncertainty. Every piece of test and measurement equipment has actual verification or calibration with traceability to national and international references. It was demonstrated that in the luminescence spectra consisting of the “blue” band around 450 nm originating from the semiconductor heterostructure, and the broad “yellow” band from luminophor, the last band is nonelementary and consists of at least two bands: the “green” one around 530 nm and the “orange” one around 580 nm. The most unstable “green” band has the highest impact on photometric characteristics. As a consequence, further investigation should be performed on how instability of elementary bands and its quantity will link not only with photometric characteristics, but with production conditions and material properties of LED heterostructure and luminophor itself. In particular, for improvement of the color stability of white LED, the parameters of luminophor forming the “green” band should be stabilized. А unified method for accelerated testing of LED products and method for long-time lifetime prediction shall be developed, taking into account not only depreciation of TLF, but also shift of other photometric and spectral characteristics of white LED.The relation between numerical values of photometric characteristics (total luminous flux TLF, correlated color temperature CCT, color rendering index CRI) of white light emitting diodes (LED) and the variation of the spectral shape of their radiation during aging has been investigated. All the measurements were made on internationally adopted test methods, taking into account environmental conditions, electrical parameters and evaluated measurement uncertainty. Every piece of test and measurement equipment has actual verification or calibration with traceability to national and international references. It was demonstrated that in the luminescence spectra consisting of the “blue” band around 450 nm originating from the semiconductor heterostructure, and the broad “yellow” band from luminophor, the last band is nonelementary and consists of at least two bands: the “green” one around 530 nm and the “orange” one around 580 nm. The most unstable “green” band has the highest impact on photometric characteristics. As a consequence, further investigation should be performed on how instability of elementary bands and its quantity will link not only with photometric characteristics, but with production conditions and material properties of LED heterostructure and luminophor itself. In particular, for improvement of the color stability of white LED, the parameters of luminophor forming the “green” band should be stabilized. А unified method for accelerated testing of LED products and method for long-time lifetime prediction shall be developed, taking into account not only depreciation of TLF, but also shift of other photometric and spectral characteristics of white LED

    Simulation of electromagnetic field distribution in the measuring cell for determining the dielectric permittivity of materials at microwave frequencies

    Get PDF
    To determine the dielectric permittivity of materials in a wide frequency range with the automation of measurements and the necessary accuracy, measuring cells have been created to ensure the simplicity of the design of the waveguide path. In order to obtain information about the suitability of measuring cells based on irregular SHF waveguides for estimation of dielectric parameters of materials, we simulated the structure of electromagnetic field in the system consisting of two irregular waveguides and waveguide chamber placed between them using a three-dimensional electrodynamic simulation in Ansoft HFSS package environment. The distribution of the electric field was simulated when an empty polyethylene tube, a rod of fluoroplastic and a rod of textolite are placed in the measuring cell. It was demonstrated that high order modes fade out in irregular waveguide and do not affect the precision of obtained results, and significant edge effects were not detected. It allows one to utilize measuring cells based on irregular waveguides together with a scalar or vector network analyzer and using the partial filling of the waveguide method or the modified Nicholson – Ross – Weir method for measurements of dielectric permittivity of materials. The results of modeling the dependence of the amplitude and phase of the reflection coefficient of the textolite and fluoroplastic on the frequency in Ansoft HFSS environment are given. The simulation results are compared with the results obtained experimentally. The frequency dependencies of were obtained experimentally for test materials – textolite and fluoroplastic – in the frequency range of 25,95–37,50 GHz. The experimental data are in satisfactory agreement with the results of theoretical calculations and do not go beyond the boundaries specified by the measurement uncertainty.To determine the dielectric permittivity of materials in a wide frequency range with the automation of measurements and the necessary accuracy, measuring cells have been created to ensure the simplicity of the design of the waveguide path. In order to obtain information about the suitability of measuring cells based on irregular SHF waveguides for estimation of dielectric parameters of materials, we simulated the structure of electromagnetic field in the system consisting of two irregular waveguides and waveguide chamber placed between them using a three-dimensional electrodynamic simulation in Ansoft HFSS package environment. The distribution of the electric field was simulated when an empty polyethylene tube, a rod of fluoroplastic and a rod of textolite are placed in the measuring cell. It was demonstrated that high order modes fade out in irregular waveguide and do not affect the precision of obtained results, and significant edge effects were not detected. It allows one to utilize measuring cells based on irregular waveguides together with a scalar or vector network analyzer and using the partial filling of the waveguide method or the modified Nicholson – Ross – Weir method for measurements of dielectric permittivity of materials. The results of modeling the dependence of the amplitude and phase of the reflection coefficient of the textolite and fluoroplastic on the frequency in Ansoft HFSS environment are given. The simulation results are compared with the results obtained experimentally. The frequency dependencies of were obtained experimentally for test materials – textolite and fluoroplastic – in the frequency range of 25,95–37,50 GHz. The experimental data are in satisfactory agreement with the results of theoretical calculations and do not go beyond the boundaries specified by the measurement uncertainty

    Color and spectral characteristics of white light emitting diodes and their variation during aging

    Get PDF
    The relation between numerical values of photometric characteristics (total luminous flux TLF, correlated color temperature CCT, color rendering index CRI) of white light emitting diodes (LED) and the variation of the spectral shape of their radiation during aging has been investigated. All the measurements were made on internationally adopted test methods, taking into account environmental conditions, electrical parameters and evaluated measurement uncertainty. Every piece of test and measurement equipment has actual verification or calibration with traceability to national and international references. It was demonstrated that in the luminescence spectra consisting of the “blue” band around 450 nm originating from the semiconductor heterostructure, and the broad “yellow” band from luminophor, the last band is non-elementary and consists of at least two bands: the “green” one around 530 nm and the “orange” one around 580 nm. The most unstable “green” band has the highest impact on photometric characteristics. As a consequence, further investigation should be performed on how instability of elementary bands and its quantity will link not only with photometric characteristics, but with production conditions and material properties of LED heterostructure and luminophor itself. In particular, for improvement of the color stability of white LED, the parameters of luminophor forming the “green” band should be stabilized. А unified method for accelerated testing of LED products and method for long-time lifetime prediction shall be developed, taking into account not only depreciation of TLF, but also shift of other photometric and spectral characteristics of white LED

    Shifting donor-acceptor photoluminescence in N-doped ZnO

    Full text link
    We have grown nitrogen-doped ZnO films grown by two kinds of epitaxial methods on lattice-matched ScAlMgO4_4 substrates. We measured the photoluminescence (PL) of the two kinds of ZnO:N layers in the donor-acceptor-pair transition region. The analysis of excitation-intensity dependence of the PL peak shift with a fluctuation model has proven that our observed growth-technique dependence was explained in terms of the inhomogeneity of charged impurity distribution. It was found that the inhomogeneity in the sample prepared with the process showing better electrical property was significantly smaller in spite of the similar nitrogen concentration. The activation energy of acceptor has been evaluated to be 170\approx 170 meV, which is independent of the nitrogen concentration.Comment: 4 pages, 3 figures, 1 table, RevTeX4, to appear in the July issue of J. Phys. Soc. Jp

    Statistical-mechanical lattice models for protein-DNA binding in chromatin

    Get PDF
    Statistical-mechanical lattice models for protein-DNA binding are well established as a method to describe complex ligand binding equilibriums measured in vitro with purified DNA and protein components. Recently, a new field of applications has opened up for this approach since it has become possible to experimentally quantify genome-wide protein occupancies in relation to the DNA sequence. In particular, the organization of the eukaryotic genome by histone proteins into a nucleoprotein complex termed chromatin has been recognized as a key parameter that controls the access of transcription factors to the DNA sequence. New approaches have to be developed to derive statistical mechanical lattice descriptions of chromatin-associated protein-DNA interactions. Here, we present the theoretical framework for lattice models of histone-DNA interactions in chromatin and investigate the (competitive) DNA binding of other chromosomal proteins and transcription factors. The results have a number of applications for quantitative models for the regulation of gene expression.Comment: 19 pages, 7 figures, accepted author manuscript, to appear in J. Phys.: Cond. Mat

    Color and spectral characteristics of white LEDs and their variation during aging

    Get PDF
    White LEDs are widely used for LCD display backlighting, including low cost color displays. It is essential for these LEDs to provide stable characteristics through life cycle, especially chromaticity and color rendering. Therefore, care shall be taken for LED aging (including degradation of luminophor coating), because intense degradation will cause invalid color perception, especially when using bichromatic LEDs as backlight source

    A new method for calculation of crystal susceptibilities for X-ray diffraction at arbitrary wavelength

    Get PDF
    A novel method for the calculation of the X-ray susceptibility of a crystal in a wide range of radiation wavelengths is described. An analytical interpolation of one-electron wave functions is built to approximate the solution to Hartree± Fock equations for all atoms and ions of the periodic system of elements with high accuracy. These functions allow the calculation of the atomic form factors in the entire range of a transmitted momentum as well as the description of their anisotropy taking into account external and intracrystalline ®elds. Also, an analytical approximation for the force matrix of an arbitrary crystal is obtained and the microscopic calculation of the Debye±Waller factor for crystals with a complicated unit cell is presented

    ГРУППА SO(4,2) И СИММЕТРИЙНЫЕ СВОЙСТВА ПЕРИОДИЧЕСКОЙ СИСТЕМЫ ЭЛЕМЕНТОВ Д.И. МЕНДЕЛЕЕВА

    Get PDF
    The group-based method of classification of chemical elements for definition of their place in the Mendeleev’s periodic system of elements is considered. The arrangement of energetic elements in periods according to the diagram of experimentally defined atomic electron shells is compared to energy levels of elements estimated from the Madelung-Klechkovsky lexicographic ordering rules. It is shown that for adequate description of the set of elements in the framework of approach based on the use of the group method, the changig the peculiarirties of the eigenvalues degeneration of the electron hamiltonian describing a hydrogen-like system is necessary. For this, it is sufficient to include into the hamiltonian a term containing operator of squared orbital momentum.Рассматривается групповой метод классификации элементов для определения их расположения в Периодической системе элементов Д.И. Менделеева. Сравниваются расположение энергетических элементов по периодам в диаграмме экспериментально установленных электронных оболочек элементов с энергетическими уровнями электронных оболочек элементов, определенных по правилам лексикографического упорядочения Маделунга-Клечковского. Показано, что для адекватного описания свойств совокупности элементов в рамках подходов, основанных на использовании групповых методов, требуется изменение особенностей вырождения собственных значений одноэлектронного гамильтониана водородоподобной системы, для чего достаточно включить в гамильтониан член, содержащий оператор квадрата орбитального момента
    corecore