4,291 research outputs found

    Materials Contrast in Piezoresponse Force Microscopy

    Full text link
    Piezoresponse Force Microscopy contrast in transversally isotropic material corresponding to the case of c+ - c- domains in tetragonal ferroelectrics is analyzed using Green's function theory by Felten et al. [J. Appl. Phys. 96, 563 (2004)]. A simplified expression for PFM signal as a linear combination of relevant piezoelectric constant are obtained. This analysis is extended to piezoelectric material of arbitrary symmetry with weak elastic and dielectric anisotropies. This result provides a framework for interpretation of PFM signals for systems with unknown or poorly known local elastic and dielectric properties, including nanocrystalline materials, ferroelectric polymers, and biopolymers.Comment: 20 pages, 3 figures, 1 table, accepted to Appl. Phys. Lett. (without Appendices), algebraic errors were correcte

    Dynamic Behavior in Piezoresponse Force Microscopy

    Full text link
    Frequency dependent dynamic behavior in Piezoresponse Force Microscopy (PFM) implemented on a beam-deflection atomic force microscope (AFM) is analyzed using a combination of modeling and experimental measurements. The PFM signal comprises contributions from local electrostatic forces acting on the tip, distributed forces acting on the cantilever, and three components of the electromechanical response vector. These interactions result in the bending and torsion of the cantilever, detected as vertical and lateral PFM signals. The relative magnitudes of these contributions depend on geometric parameters of the system, the stiffness and frictional forces of tip-surface junction, and operation frequencies. The dynamic signal formation mechanism in PFM is analyzed and conditions for optimal PFM imaging are formulated. The experimental approach for probing cantilever dynamics using frequency-bias spectroscopy and deconvolution of electromechanical and electrostatic contrast is implemented.Comment: 65 pages, 15 figures, high quality version available upon reques

    Piezoresponse Force Microscopy: A Window into Electromechanical Behavior at the Nanoscale

    Get PDF
    Piezoresponse force microscopy (PFM) is a powerful method widely used for nanoscale studies of the electromechanical coupling effect in various materials systems. Here, we review recent progress in this field that demonstrates great potential of PFM for the investigation of static and dynamic properties of ferroelectric domains, nanofabrication and lithography, local functional control, and structural imaging in a variety of inorganic and organic materials, including piezoelectrics, semiconductors, polymers, biomolecules, and biological systems. Future pathways for PFM application in high-density data storage, nanofabrication, and spectroscopy are discussed

    Status report of the baseline collimation system of CLIC. Part II

    Get PDF
    Important efforts have recently been dedicated to the characterisation and improvement of the design of the post-linac collimation system of the Compact Linear Collider (CLIC). This system consists of two sections: one dedicated to the collimation of off-energy particles and another one for betatron collimation. The energy collimation system is further conceived as protection system against damage by errant beams. In this respect, special attention is paid to the optimisation of the energy collimator design. The material and the physical parameters of the energy collimators are selected to withstand the impact of an entire bunch train. Concerning the betatron collimation section, different aspects of the design have been optimised: the transverse collimation depths have been recalculated in order to reduce the collimator wakefield effects while maintaining a good efficiency in cleaning the undesired beam halo; the geometric design of the spoilers has been reviewed to minimise wakefields; in addition, the optics design has been optimised to improve the collimation efficiency. This report presents the current status of the the post-linac collimation system of CLIC. Part II is mainly dedicated to the study of the betatron collimation system and collimator wakefield effects.Comment: 25 pages, 13 figure

    Domain Dynamics in Piezoresponse Force Microscopy: Quantitative Deconvolution and Hysteresis Loop Fine Structure

    Full text link
    Domain dynamics in the Piezoresponse Force Spectroscopy (PFS) experiment is studied using the combination of local hysteresis loop acquisition with simultaneous domain imaging. The analytical theory for PFS signal from domain of arbitrary cross-section is developed and used for the analysis of experimental data on Pb(Zr,Ti)O3 polycrystalline films. The results suggest formation of oblate domain at early stage of the domain nucleation and growth, consistent with efficient screening of depolarization field within the material. The fine structure of the hysteresis loop is shown to be related to the observed jumps in the domain geometry during domain wall propagation (nanoscale Barkhausen jumps), indicative of strong domain-defect interactions.Comment: 17 pages, 3 figures, 2 Appendices, to be submmited to Appl. Phys. Let
    • …
    corecore