142 research outputs found

    Spin-Orbit Assisted Variable-Range Hopping in Strong Magnetic Fields

    Full text link
    It is shown that in the presence of strong magnetic fields, spin-orbit scattering causes a sharp increase in the effective density of states in the variable-range hopping regime when temperature decreases. This effect leads to an exponential enhancement of the conductance above its value without spin-orbit scattering. Thus an experimental study of the hopping conductivity in a fixed, large magnetic field, is a sensitive tool to explore the spin-orbit scattering parameters in the strongly localized regime.Comment: 9 pages + 2 figures (enclosed), Revte

    Temperature-Dependence of the Resistivity of a Dilute 2D Electron System in High Parallel Magnetic Field

    Full text link
    We report measurements of the resistance of silicon MOSFETs as a function of temperature in high parallel magnetic fields where the 2D system of electrons has been shown to be fully spin-polarized. A magnetic field suppresses the metallic behavior observed in the absence of a magnetic field. In a field of 10.8 T, insulating behavior is found for densities up to n_s approximately 1.35 x 10^{11} cm^{-2} or 1.5 n_c; above this density the resistance is a very weak function of temperature, varying less than 10% between 0.25 K and 1.90 K. At low densities the resistance goes to infinity more rapidly as the temperature is reduced than in zero field and the magnetoresistance diverges as T goes to 0.Comment: 4 pages, including 4 figures. References adde

    Parallel Magnetic Field Induced Transition in Transport in the Dilute Two-Dimensional Hole System in GaAs

    Full text link
    A magnetic field applied parallel to the two-dimensional hole system in the GaAs/AlGaAs heterostructure, which is metallic in the absence of an external magnetic field, can drive the system into insulating at a finite field through a well defined transition. The value of resistivity at the transition is found to depend strongly on density

    Influence of parallel magnetic fields on a single-layer two-dimensional electron system with a hopping mechanism of conductivity

    Full text link
    Large positive (P) magnetoresistance (MR) has been observed in parallel magnetic fields in a single 2D layer in a delta-doped GaAs/AlGaAs heterostructure with a variable-range-hopping (VRH) mechanism of conductivity. Effect of large PMR is accompanied in strong magnetic fields by a substantial change in the character of the temperature dependence of the conductivity. This implies that spins play an important role in 2D VRH conductivity because the processes of orbital origin are not relevant to the observed effect. A possible explanation involves hopping via double occupied states in the upper Hubbard band, where the intra-state correlation of spins is important.Comment: 10 pages, 4 jpeg figure

    Tenfold Magnetoconductance in a Non-Magnetic Metal Film

    Full text link
    We present magnetoconductance (MC) measurements of homogeneously disordered Be films whose zero field sheet conductance (G) is described by the Efros-Shklovskii hopping law G(T)=(2e2/h)exp(To/T)1/2G(T)=(2e^2/h)\exp{-(T_o/T)^{1/2}}. The low field MC of the films is negative with G decreasing 200% below 1 T. In contrast the MC above 1 T is strongly positive. At 8 T, G increases 1000% in perpendicular field and 500% in parallel field. In the simpler parallel case, we observe {\em field enhanced} variable range hopping characterized by an attenuation of ToT_o via the Zeeman interaction.Comment: 9 pages including 5 figure
    corecore