19 research outputs found

    Superfluorescence Polarization: Signature of Collisional Redistribution

    Get PDF
    We have studied effects of magnetic sublevel degeneracy on the polarization of superfluorescent pulses generated on the Ca 4s4p1P1–3d4s1D2 transition at 5.5μm. These pulses were generated from a cell of length 50 cm by optically pumping calcium vapor on the 4s21S0–4s4p1P1 transition in the presence of Ar gas. The axis of ellipticity of superfluorescence (SF) polarization is oriented parallel to the axis of the pump-laser polarization at large detunings, and undergoes an abrupt rotation through 90° for detunings close to resonance. The distribution of populations in the magnetic sublevels of the 1P1 state can be estimated using a simple model based on previously calculated cross sections for collisionally aided absorption in the presence of an intense (pump) field. For large detunings, these estimates are consistent with the polarized SF intensity measured in the experiment. A direct measurement of the populations of the 1P1 magnetic sublevels also supports the collisional redistribution predicted by the calculated cross sections. We therefore suggest that SF polarization can be a useful signature of collisional redistribution. However, the change in ellipticity is unexpected, and probable causes for this effect are discussed

    Demonstration of improved sensitivity of echo interferometers to gravitational acceleration

    Full text link
    We have developed two configurations of an echo interferometer that rely on standing wave excitation of a laser-cooled sample of rubidium atoms that measures acceleration. For a two-pulse configuration, the interferometer signal is modulated at the recoil frequency and exhibits a sinusoidal frequency chirp as a function of pulse spacing. For a three-pulse stimulated echo configuration, the signal is observed without recoil modulation and exhibits a modulation at a single frequency. The three-pulse configuration is less sensitive to effects of vibrations and magnetic field curvature leading to a longer experimental timescale. For both configurations of the atom interferometer (AI), we show that a measurement of acceleration with a statistical precision of 0.5% can be realized by analyzing the shape of the echo envelope that has a temporal duration of a few microseconds. Using the two-pulse AI, we obtain measurements of acceleration that are statistically precise to 6 parts per million (ppm) on a 25 ms timescale. Using the three-pulse AI, we obtain measurements of acceleration that are statistically precise to 0.4 ppm on a timescale of 50 ms. A further statistical enhancement is achieved by analyzing the data across the echo envelope to improve the statistical precision to 75 parts per billion (ppb). We discuss methods for reducing prominent systematic effects due to a magnetized vacuum chamber and improving the signal-to-noise ratio. Simulations of both AI configurations with a timescale of 300 ms reached in a non-magnetic vacuum chamber suggest that an optimized experiment with improved vibration isolation and atoms selected in the mF = 0 state can result in measurements of g statistically precise to 0.3 pbb for the two-pulse AI and 0.6 ppb for the three-pulse AI.Comment: 17 pages, 9 figures, 3 table

    Super-radiant light scattering from trapped Bose Einstein condensates

    Full text link
    We propose a new formulation for atomic side mode dynamics from super-radiant light scattering of trapped atoms. A detailed analysis of the recently observed super-radiant light scattering from trapped bose gases [S. Inouye {\it et al.}, Science {\bf 285}, 571 (1999)] is presented. We find that scattered light intensity can exhibit both oscillatory and exponential growth behaviors depending on densities, pump pulse characteristics, temperatures, and geometric shapes of trapped gas samples. The total photon scattering rate as well as the accompanied matter wave amplification depends explicitly on atom number fluctuations in the condensate. Our formulation allows for natural and transparent interpretations of subtle features in the MIT data, and provides numerical simulations in good agreement with all aspects of the experimental observations.Comment: 24 pages,16 figures, submitted to Phys.Rev.

    Does matter wave amplification work for fermions?

    Full text link
    We discuss the relationship between bosonic stimulation, density fluctuations, and matter wave gratings. It is shown that enhanced stimulated scattering, matter wave amplification and atomic four-wave mixing are in principle possible for fermionic or non-degenerate samples if they are prepared in a cooperative state. In practice, there are limitations by short coherence times.Comment: 5 pages, 1 figure

    Characterization and applications of auto-locked vacuum-sealed diode lasers for precision metrology

    Get PDF
    We demonstrate the performance characteristics of a new class of vacuum-sealed, autolocking diode laser systems and their applications to precision metrology. The laser is based on adaptations of a design that uses optical feedback from an interference filter and it includes a vacuum-sealed cavity, an interchangeable base-plate, and an autolocking digital controller. A change of the base-plate allows operation at desired wavelengths in the visible and near infrared spectral range, whereas the autolocking ability allows the laser to be tuned and frequency stabilized with respect to atomic, molecular, and solid-state resonances without human intervention using a variety of control algorithms programmed into the same controller. We characterize the frequency stability of this laser system based on the Allan deviation (ADEV) of the beat note and of the lock signal. We find that the ADEV floor of 2 × 10−12 and short-term linewidth of ∼200 kHz are strongly influenced by current noise and vacuum sealing. Reducing the current noise and cavity pressure decreases the ADEV floor and increases the averaging time at which the floor occurs, which is a signature of long-term stability. We also show that evacuating the cavity to ∼1 Torr reduces the range of the correction signal of the feedback loop by approximately one order of magnitude, thereby increasing the lock range of the controller. The long-term stability allows the laser to be incorporated into a commercial gravimeter for accurate measurements of gravitational acceleration at the level of a few parts-per-billion, which are comparable to values obtained with an iodine-stabilized He–Ne laser. The autolocking and pattern-matching features of the controller allow the laser to be tuned and stabilized with respect to a temperature tunable transmission spectrum of a fiber-Bragg grating. This capability may be suitable for the development of a differential absorption LIDAR transmitter that can generate data at both on-line and off-line lock points using a single laser
    corecore