2,727 research outputs found

    Topological analysis of polymeric melts: Chain length effects and fast-converging estimators for entanglement length

    Full text link
    Primitive path analyses of entanglements are performed over a wide range of chain lengths for both bead spring and atomistic polyethylene polymer melts. Estimators for the entanglement length N_e which operate on results for a single chain length N are shown to produce systematic O(1/N) errors. The mathematical roots of these errors are identified as (a) treating chain ends as entanglements and (b) neglecting non-Gaussian corrections to chain and primitive path dimensions. The prefactors for the O(1/N) errors may be large; in general their magnitude depends both on the polymer model and the method used to obtain primitive paths. We propose, derive and test new estimators which eliminate these systematic errors using information obtainable from the variation of entanglement characteristics with chain length. The new estimators produce accurate results for N_e from marginally entangled systems. Formulas based on direct enumeration of entanglements appear to converge faster and are simpler to apply.Comment: Major revisions. Developed near-ideal estimators which operate on multiple chain lengths. Now test these on two very different model polymers

    Kondo effect of a Co atom on Cu(111) in contact with an Fe tip

    Full text link
    Single Co atoms, which exhibit a Kondo effect on Cu(111), are contacted with Cu and Fe tips in a low-temperature scanning tunneling microscope. With Fe tips, the Kondo effect persists with the Abrikosov-Suhl resonance significantly broadened. In contrast, for Cu-covered W tips, the resonance width remains almost constant throughout the tunneling and contact ranges. The distinct changes of the line width are interpreted in terms of modifications of the Co d state occupation owing to hybridization with the tip apex atoms.Comment: 4 pages, 3 figure

    Atom Transfer and Single-Adatom Contacts

    Full text link
    The point contact of a tunnel tip approaching towards Ag(111) and Cu(111) surfaces is investigated with a low temperature scanning tunneling microscope. A sharp jump-to-contact, random in nature, is observed in the conductance. After point contact, the tip-apex atom is transferred to the surface, indicating that a one-atom contact is formed during the approach. In sharp contrast, the conductance over single silver and copper adatoms exhibits a smooth and reproducible transition from tunneling to contact regime. Numerical simulations show that this is a consequence of the additional dipolar bonding between the homoepitaxial adatom and the surface atoms.Comment: 4 pages, 4 figure

    Origin of the large thermoelectric power in oxygen-variable RBaCo_{2}O_{5+x} (R=Gd, Nd)

    Full text link
    Thermoelectric properties of GdBaCo_{2}O_{5+x} and NdBaCo_{2}O_{5+x} single crystals have been studied upon continuous doping of CoO_2 planes with either electrons or holes. The thermoelectric response and the resistivity behavior reveal a hopping character of the transport in both compounds, providing the basis for understanding the recently found remarkable divergence of the Seebeck coefficient at x=0.5. The doping dependence of the thermoelectric power evinces that the configurational entropy of charge carriers, enhanced by their spin and orbital degeneracy, plays a key role in the origin of the large thermoelectric response in these correlated oxides.Comment: 5 pages, 4 figures, accepted for publication in PR

    Evolution of unoccupied resonance during the synthesis of a silver dimer on Ag(111)

    Full text link
    Silver dimers were fabricated on Ag(111) by single-atom manipulation using the tip of a cryogenic scanning tunnelling microscope. An unoccupied electronic resonance was observed to shift toward the Fermi level with decreasing atom-atom distance as monitored by spatially resolved scanning tunnelling spectroscopy. Density functional calculations were used to analyse the experimental observations and revealed that the coupling between the adsorbed atoms is predominantly direct rather than indirect via the Ag(111) substrate.Comment: 9 pages, 3 figure

    The adsorption structure of furan on Pd(1 1 1)

    Get PDF
    The structure of molecular furan, C4H4O, on Pd(1 1 1) has been investigated by O K-edge near-edge X-ray absorption fine structure (NEXAFS) and C 1s scanned-energy mode photoelectron diffraction (PhD). NEXAFS shows the molecule to be adsorbed with the molecular plane close to parallel to the surface, a conclusion confirmed by the PhD analysis. Chemical-state specific C 1s PhD data were obtained for the two inequivalent C atoms in the furan, the α-C atoms adjacent to the O atom, and the β-C atoms bonded only to C atoms, but only the PhD modulations for the α-C emitters were of sufficiently large amplitude for detailed evaluation using multiple scattering calculations. This analysis shows the α-C atoms to be located approximately 0.6 Å off-atop surface Pd atoms with an associated C–Pd bondlength of 2.13 ± 0.03 Å. Two alternative local geometries consistent with the data place the O atom in off-atop or near-hollow locations, and for each of these local structures there are two equally-possible registries relative to the fcc and hcp hollow sites. The results are in good agreement with earlier density functional theory calculations which indicate that the fcc and hcp registries are equally probable, but the PhD results fail to distinguish the two distinct local bonding geometries

    Succinate: quinone oxidoreductases: new insights from X-ray crystal structures

    Get PDF
    AbstractMembrane-bound succinate dehydrogenases (succinate:quinone reductases, SQR) and fumarate reductases (quinol:fumarate reductases, QFR) couple the oxidation of succinate to fumarate to the reduction of quinone to quinol and also catalyse the reverse reaction. SQR (respiratory complex II) is involved in aerobic metabolism as part of the citric acid cycle and of the aerobic respiratory chain. QFR is involved in anaerobic respiration with fumarate as the terminal electron acceptor, and is part of an electron transport chain catalysing the oxidation of various donor substrates by fumarate. QFR and SQR complexes are collectively referred to as succinate:quinone oxidoreductases (EC 1.3.5.1), have very similar compositions and are predicted to share similar structures. The complexes consist of two hydrophilic and one or two hydrophobic, membrane-integrated subunits. The larger hydrophilic subunit A carries covalently bound flavin adenine dinucleotide and subunit B contains three iron-sulphur centres. QFR of Wolinella succinogenes and SQR of Bacillus subtilis contain only one hydrophobic subunit (C) with two haem b groups. In contrast, SQR and QFR of Escherichia coli contain two hydrophobic subunits (C and D) which bind either one (SQR) or no haem b group (QFR). The structure of W. succinogenes QFR has been determined at 2.2 Å resolution by X-ray crystallography (C.R.D. Lancaster, A. Kröger, M. Auer, H. Michel, Nature 402 (1999) 377–385). Based on this structure of the three protein subunits and the arrangement of the six prosthetic groups, a pathway of electron transfer from the quinol-oxidising dihaem cytochrome b to the site of fumarate reduction and a mechanism of fumarate reduction was proposed. The W. succinogenes QFR structure is different from that of the haem-less QFR of E. coli, described at 3.3 Å resolution (T.M. Iverson, C. Luna-Chavez, G. Cecchini, D.C. Rees, Science 284 (1999) 1961–1966), mainly with respect to the structure of the membrane-embedded subunits and the relative orientations of soluble and membrane-embedded subunits. Also, similarities and differences between QFR transmembrane helix IV and transmembrane helix F of bacteriorhodopsin and their implications are discussed
    • …
    corecore