1,922 research outputs found
SU(N) Wigner-Racah algebra for the matrix of second moments of embedded Gaussian unitary ensemble of random matrices
Recently Pluhar and Weidenmueller [Ann. Phys. (N.Y.) Vol 297, 344 (2002)]
showed that the eigenvectors of the matrix of second moments of embedded
Gaussian unitary ensemble of random matrices generated by k-body interactions
(EGUE(k)) for m fermions in N single particle states are SU(N) Wigner
coefficients and derived also an expression for the eigenvalues. Going beyond
this work, we will show that the eigenvalues of this matrix are square of a
SU(N) Racah coefficient and thus the matrix of second moments of EGUE(k) is
solved completely by SU(N) Wigner-Racah algebra.Comment: 16 page
O(12) limit and complete classification of symmetry schemes in proton-neutron interacting boson model
It is shown that the proton-neutron interacting boson model (pnIBM) admits
new symmetry limits with O(12) algebra which break F-spin but preserves the
quantum number M_F. The generators of O(12) are derived and the quantum number
`v' of O(12) for a given boson number N is determined by identifying the
corresponding quasi-spin algebra. The O(12) algebra generates two symmetry
schemes and for both of them, complete classification of the basis states and
typical spectra are given. With the O(12) algebra identified, complete
classification of pnIBM symmetry limits with good M_F is established.Comment: 22 pages, 1 figur
Spin-polarized electronic structures and transport properties of Fe-Co alloys
The electrical resistivities of Fe-Co alloys owing to random alloy disorder
are calculated using the Kubo-Greenwood formula. The obtained electrical
esistivities agree well with experimental data quantitatively at low
temperature. The spin-polarization of Fe50Co50 estimated from the conductivity
(86%) has opposite sign to that from the densities of the states at the Fermi
level (-73%). It is found that the conductivity is governed mainly by
s-electrons, and the s-electrons in the minority spin states are less
conductive due to strong scattering by the large densities of the states of
d-electrons than the majority spin electrons.Comment: 3 pages, 4 figure
Half-lives and pre-supernova weak interaction rates for nuclei away from the stability line
A detailed model for the calculation of beta decay rates of the shell
nuclei for situations prevailing in pre-supernova and collapse phases of
evolution of the core of massive stars leading to supernova explosion has been
extended for electron-capture rates. It can also be used to determine the
half-lives of neutron-rich nuclei in the shell. The model uses an
averaged Gamow-Teller (GT) strength function. But it can also use the
experimental log ft values and GT strength function from reaction
studies wherever available. The calculated rate includes contributions from
each of the low-lying excited states of the mother including some specific
resonant states ("back resonance") having large GT matrix elements.Comment: 11 pages; Latex; no figs; version to appear in J. Phys.
Local SiC photoluminescence evidence of non-mutualistic hot spot formation and sub-THz coherent emission from a rectangular BiSrCaCuO mesa
From the photoluminescence of SiC microcrystals uniformly covering a
rectangular mesa of the high transition temperature superconductor
BiSrCaCuO, the local surface temperature
was directly measured during simultaneous sub-THz emission from the
intrinsic Josephson junctions (IJJs) in the mesa. At high bias currents and
low bath temperatures K, the center of a large
elliptical hot spot with jumps dramatically with little
current-voltage characteristic changes. The hot spot doesn't alter the
ubiquitous primary and secondary emission conditions: the ac Josephson relation
and the electromagnetic cavity resonance excitation, respectively. Since the
intense sub-THz emission was observed for high K in
the low bias regime where hot spots are absent, hot spots can not provide
the primary mechanisms for increasing the output power, the tunability, or for
promoting the synchronization of the IJJs for the sub-THz emission, but can
at best coexist non-mutualistically with the emission. No standing
waves were observed
FOOT STRUCUTRES INCREASED POSITIVE MECHANICAL WORK DURING LOADED WALKING.
The ankle and foot system is a combination of flexible and adaptable structures. which are analogous to a spring that absorbs/stores and generates/returns mechanical energy during locomotion [1]. Studies have shown that the foot muscles are able to modulate arch compression during static loading conditions [2]. The purpose of this study was to determine how walking with varying levels of added mass affect the combined functional behavior of the foot. We hypothesized that the foot structures would increase the amount of dissipated/absorbed energy when walking with added mass. Eighteen healthy, young participants completed barefoot walking in three randomized loading conditions (0, +15, and +30% of added body mass). The walking speed was targeted at 1.25 m/s (2.8 mph). The mechanical power of the foot during the over-ground trials was quantified using a unified deformable segment analysis by modeling all structures distal to the calcaneus as a deforming body [1]. We quantified the negative and positive mechanical work over stance, by integrating the positive and negative portions of the mechanical power data. Walking with added mass had a significant effect on the magnitude of positive work (p \u3c 0.001), including a 19% increase between 0 and +30% added mass conditions (p \u3c 0.001). There was no significant effect of added mass on negative work (p = 0.055) and on net work (p = 0.402) (Figure 1). Experimental results failed to support our initial hypothesis, as the foot increased the magnitude of positive work, and preserved similar amounts of net negative work (i.e., energy dissipated/absorbed) across varying levels of added mass conditions. Overall, the foot appears to have similar characteristics of a shock absorber- spring complex
- …