94 research outputs found

    Orthogonal Decomposition of Some Affine Lie Algebras in Terms of their Heisenberg Subalgebras

    Full text link
    In the present note we suggest an affinization of a theorem by Kostrikin et.al. about the decomposition of some complex simple Lie algebras G{\cal G} into the algebraic sum of pairwise orthogonal Cartan subalgebras. We point out that the untwisted affine Kac-Moody algebras of types Apm1A_{p^m-1} (pp prime, m1m\geq 1), Br,C2m,Dr,G2,E7,E8B_r, \, C_{2^m}, D_r,\, G_2,\, E_7,\, E_8 can be decomposed into the algebraic sum of pairwise or\-tho\-go\-nal Heisenberg subalgebras. The Apm1A_{p^m-1} and G2G_2 cases are discussed in great detail. Some possible applications of such decompositions are also discussed.Comment: 16 pages, LaTeX, no figure

    Bases for qudits from a nonstandard approach to SU(2)

    Full text link
    Bases of finite-dimensional Hilbert spaces (in dimension d) of relevance for quantum information and quantum computation are constructed from angular momentum theory and su(2) Lie algebraic methods. We report on a formula for deriving in one step the (1+p)p qupits (i.e., qudits with d = p a prime integer) of a complete set of 1+p mutually unbiased bases in C^p. Repeated application of the formula can be used for generating mutually unbiased bases in C^d with d = p^e (e > or = 2) a power of a prime integer. A connection between mutually unbiased bases and the unitary group SU(d) is briefly discussed in the case d = p^e.Comment: From a talk presented at the 13th International Conference on Symmetry Methods in Physics (Dubna, Russia, 6-9 July 2009) organized in memory of Prof. Yurii Fedorovich Smirnov by the Bogoliubov Laboratory of Theoretical Physics of the JINR and the ICAS at Yerevan State University

    Unbiased bases (Hadamards) for 6-level systems: Four ways from Fourier

    Full text link
    In quantum mechanics some properties are maximally incompatible, such as the position and momentum of a particle or the vertical and horizontal projections of a 2-level spin. Given any definite state of one property the other property is completely random, or unbiased. For N-level systems, the 6-level ones are the smallest for which a tomographically efficient set of N+1 mutually unbiased bases (MUBs) has not been found. To facilitate the search, we numerically extend the classification of unbiased bases, or Hadamards, by incrementally adjusting relative phases in a standard basis. We consider the non-unitarity caused by small adjustments with a second order Taylor expansion, and choose incremental steps within the 4-dimensional nullspace of the curvature. In this way we prescribe a numerical integration of a 4-parameter set of Hadamards of order 6.Comment: 5 pages, 2 figure

    A Lie algebra that can be written as a sum of two nilpotent subalgebras, is solvable

    Full text link
    This is an old paper put here for archeological purposes. It is proved that a finite-dimensional Lie algebra over a field of characteristic p>5, that can be written as a vector space (not necessarily direct) sum of two nilpotent subalgebras, is solvable. The same result (but covering also the cases of low characteristics) was established independently by V. Panyukov (Russ. Math. Surv. 45 (1990), N4, 181-182), and the homological methods utilized in the proof were developed later in arXiv:math/0204004. Many inaccuracies in the English translation are corrected, otherwise the text is identical to the published version.Comment: v2: minor change

    Constructing Mutually Unbiased Bases in Dimension Six

    Full text link
    The density matrix of a qudit may be reconstructed with optimal efficiency if the expectation values of a specific set of observables are known. In dimension six, the required observables only exist if it is possible to identify six mutually unbiased complex 6x6 Hadamard matrices. Prescribing a first Hadamard matrix, we construct all others mutually unbiased to it, using algebraic computations performed by a computer program. We repeat this calculation many times, sampling all known complex Hadamard matrices, and we never find more than two that are mutually unbiased. This result adds considerable support to the conjecture that no seven mutually unbiased bases exist in dimension six.Comment: As published version. Added discussion of the impact of numerical approximations and corrected the number of triples existing for non-affine families (cf Table 3

    Restricted infinitesimal deformations of restricted simple Lie algebras

    Full text link
    We compute the restricted infinitesimal deformations of the restricted simple Lie algebras over an algebraically closed field of characteristic different from 2 and 3.Comment: 15 pages; final version, to appear in Journal of Algebra and Its Application

    New invariants for entangled states

    Get PDF
    We propose new algebraic invariants that distinguish and classify entangled states. Considering qubits as well as higher spin systems, we obtained complete entanglement classifications for cases that were either unsolved or only conjectured in the literature.Comment: published versio

    Maximal Sets of Mutually Unbiased Quantum States in Dimension Six

    Full text link
    We study sets of pure states in a Hilbert space of dimension d which are mutually unbiased (MU), that is, the squares of the moduli of their scalar products are equal to zero, one, or 1/d. These sets will be called a MU constellation, and if four MU bases were to exist for d=6, they would give rise to 35 different MU constellations. Using a numerical minimisation procedure, we are able to identify only 18 of them in spite of extensive searches. The missing MU constellations provide the strongest numerical evidence so far that no seven MU bases exist in dimension six.Comment: 19 pages, 6 figures, 4 table

    Variations on a theme of Heisenberg, Pauli and Weyl

    Full text link
    The parentage between Weyl pairs, generalized Pauli group and unitary group is investigated in detail. We start from an abstract definition of the Heisenberg-Weyl group on the field R and then switch to the discrete Heisenberg-Weyl group or generalized Pauli group on a finite ring Z_d. The main characteristics of the latter group, an abstract group of order d**3 noted P_d, are given (conjugacy classes and irreducible representation classes or equivalently Lie algebra of dimension d**3 associated with P_d). Leaving the abstract sector, a set of Weyl pairs in dimension d is derived from a polar decomposition of SU(2) closely connected to angular momentum theory. Then, a realization of the generalized Pauli group P_d and the construction of generalized Pauli matrices in dimension d are revisited in terms of Weyl pairs. Finally, the Lie algebra of the unitary group U(d) is obtained as a subalgebra of the Lie algebra associated with P_d. This leads to a development of the Lie algebra of U(d) in a basis consisting of d**2 generalized Pauli matrices. In the case where d is a power of a prime integer, the Lie algebra of SU(d) can be decomposed into d-1 Cartan subalgebras.Comment: Dedicated to the memory of Mosh\'e Flato on the occasion of the tenth anniversary of his deat

    Universal Calabi-Yau Algebra: Towards an Unification of Complex Geometry

    Get PDF
    We present a universal normal algebra suitable for constructing and classifying Calabi-Yau spaces in arbitrary dimensions. This algebraic approach includes natural extensions of reflexive weight vectors to higher dimensions, related to Batyrev's reflexive polyhedra, and their n-ary combinations. It also includes a `dual' construction based on the Diophantine decomposition of invariant monomials, which provides explicit recurrence formulae for the numbers of Calabi-Yau spaces in arbitrary dimensions with Weierstrass, K3, etc., fibrations. Our approach also yields simple algebraic relations between chains of Calabi-Yau spaces in different dimensions, and concrete visualizations of their singularities related to Cartan-Lie algebras. This Universal Calabi-Yau Algebra is a powerful tool for decyphering the Calabi-Yau genome in all dimensions.Comment: 81 pages LaTeX, 8 eps figure
    corecore