94 research outputs found
Orthogonal Decomposition of Some Affine Lie Algebras in Terms of their Heisenberg Subalgebras
In the present note we suggest an affinization of a theorem by Kostrikin
et.al. about the decomposition of some complex simple Lie algebras
into the algebraic sum of pairwise orthogonal Cartan subalgebras. We point out
that the untwisted affine Kac-Moody algebras of types ( prime,
), can be decomposed into
the algebraic sum of pairwise or\-tho\-go\-nal Heisenberg subalgebras. The
and cases are discussed in great detail. Some possible
applications of such decompositions are also discussed.Comment: 16 pages, LaTeX, no figure
Bases for qudits from a nonstandard approach to SU(2)
Bases of finite-dimensional Hilbert spaces (in dimension d) of relevance for
quantum information and quantum computation are constructed from angular
momentum theory and su(2) Lie algebraic methods. We report on a formula for
deriving in one step the (1+p)p qupits (i.e., qudits with d = p a prime
integer) of a complete set of 1+p mutually unbiased bases in C^p. Repeated
application of the formula can be used for generating mutually unbiased bases
in C^d with d = p^e (e > or = 2) a power of a prime integer. A connection
between mutually unbiased bases and the unitary group SU(d) is briefly
discussed in the case d = p^e.Comment: From a talk presented at the 13th International Conference on
Symmetry Methods in Physics (Dubna, Russia, 6-9 July 2009) organized in
memory of Prof. Yurii Fedorovich Smirnov by the Bogoliubov Laboratory of
Theoretical Physics of the JINR and the ICAS at Yerevan State University
Unbiased bases (Hadamards) for 6-level systems: Four ways from Fourier
In quantum mechanics some properties are maximally incompatible, such as the
position and momentum of a particle or the vertical and horizontal projections
of a 2-level spin. Given any definite state of one property the other property
is completely random, or unbiased. For N-level systems, the 6-level ones are
the smallest for which a tomographically efficient set of N+1 mutually unbiased
bases (MUBs) has not been found. To facilitate the search, we numerically
extend the classification of unbiased bases, or Hadamards, by incrementally
adjusting relative phases in a standard basis. We consider the non-unitarity
caused by small adjustments with a second order Taylor expansion, and choose
incremental steps within the 4-dimensional nullspace of the curvature. In this
way we prescribe a numerical integration of a 4-parameter set of Hadamards of
order 6.Comment: 5 pages, 2 figure
A Lie algebra that can be written as a sum of two nilpotent subalgebras, is solvable
This is an old paper put here for archeological purposes. It is proved that a
finite-dimensional Lie algebra over a field of characteristic p>5, that can be
written as a vector space (not necessarily direct) sum of two nilpotent
subalgebras, is solvable. The same result (but covering also the cases of low
characteristics) was established independently by V. Panyukov (Russ. Math.
Surv. 45 (1990), N4, 181-182), and the homological methods utilized in the
proof were developed later in arXiv:math/0204004. Many inaccuracies in the
English translation are corrected, otherwise the text is identical to the
published version.Comment: v2: minor change
Constructing Mutually Unbiased Bases in Dimension Six
The density matrix of a qudit may be reconstructed with optimal efficiency if
the expectation values of a specific set of observables are known. In dimension
six, the required observables only exist if it is possible to identify six
mutually unbiased complex 6x6 Hadamard matrices. Prescribing a first Hadamard
matrix, we construct all others mutually unbiased to it, using algebraic
computations performed by a computer program. We repeat this calculation many
times, sampling all known complex Hadamard matrices, and we never find more
than two that are mutually unbiased. This result adds considerable support to
the conjecture that no seven mutually unbiased bases exist in dimension six.Comment: As published version. Added discussion of the impact of numerical
approximations and corrected the number of triples existing for non-affine
families (cf Table 3
Restricted infinitesimal deformations of restricted simple Lie algebras
We compute the restricted infinitesimal deformations of the restricted simple
Lie algebras over an algebraically closed field of characteristic different
from 2 and 3.Comment: 15 pages; final version, to appear in Journal of Algebra and Its
Application
New invariants for entangled states
We propose new algebraic invariants that distinguish and classify entangled
states. Considering qubits as well as higher spin systems, we obtained complete
entanglement classifications for cases that were either unsolved or only
conjectured in the literature.Comment: published versio
Maximal Sets of Mutually Unbiased Quantum States in Dimension Six
We study sets of pure states in a Hilbert space of dimension d which are
mutually unbiased (MU), that is, the squares of the moduli of their scalar
products are equal to zero, one, or 1/d. These sets will be called a MU
constellation, and if four MU bases were to exist for d=6, they would give rise
to 35 different MU constellations. Using a numerical minimisation procedure, we
are able to identify only 18 of them in spite of extensive searches. The
missing MU constellations provide the strongest numerical evidence so far that
no seven MU bases exist in dimension six.Comment: 19 pages, 6 figures, 4 table
Variations on a theme of Heisenberg, Pauli and Weyl
The parentage between Weyl pairs, generalized Pauli group and unitary group
is investigated in detail. We start from an abstract definition of the
Heisenberg-Weyl group on the field R and then switch to the discrete
Heisenberg-Weyl group or generalized Pauli group on a finite ring Z_d. The main
characteristics of the latter group, an abstract group of order d**3 noted P_d,
are given (conjugacy classes and irreducible representation classes or
equivalently Lie algebra of dimension d**3 associated with P_d). Leaving the
abstract sector, a set of Weyl pairs in dimension d is derived from a polar
decomposition of SU(2) closely connected to angular momentum theory. Then, a
realization of the generalized Pauli group P_d and the construction of
generalized Pauli matrices in dimension d are revisited in terms of Weyl pairs.
Finally, the Lie algebra of the unitary group U(d) is obtained as a subalgebra
of the Lie algebra associated with P_d. This leads to a development of the Lie
algebra of U(d) in a basis consisting of d**2 generalized Pauli matrices. In
the case where d is a power of a prime integer, the Lie algebra of SU(d) can be
decomposed into d-1 Cartan subalgebras.Comment: Dedicated to the memory of Mosh\'e Flato on the occasion of the tenth
anniversary of his deat
Universal Calabi-Yau Algebra: Towards an Unification of Complex Geometry
We present a universal normal algebra suitable for constructing and
classifying Calabi-Yau spaces in arbitrary dimensions. This algebraic approach
includes natural extensions of reflexive weight vectors to higher dimensions,
related to Batyrev's reflexive polyhedra, and their n-ary combinations. It also
includes a `dual' construction based on the Diophantine decomposition of
invariant monomials, which provides explicit recurrence formulae for the
numbers of Calabi-Yau spaces in arbitrary dimensions with Weierstrass, K3,
etc., fibrations. Our approach also yields simple algebraic relations between
chains of Calabi-Yau spaces in different dimensions, and concrete
visualizations of their singularities related to Cartan-Lie algebras. This
Universal Calabi-Yau Algebra is a powerful tool for decyphering the Calabi-Yau
genome in all dimensions.Comment: 81 pages LaTeX, 8 eps figure
- …