552 research outputs found

    A Reactive and Efficient Walking Pattern Generator for Robust Bipedal Locomotion

    Full text link
    Available possibilities to prevent a biped robot from falling down in the presence of severe disturbances are mainly Center of Pressure (CoP) modulation, step location and timing adjustment, and angular momentum regulation. In this paper, we aim at designing a walking pattern generator which employs an optimal combination of these tools to generate robust gaits. In this approach, first, the next step location and timing are decided consistent with the commanded walking velocity and based on the Divergent Component of Motion (DCM) measurement. This stage which is done by a very small-size Quadratic Program (QP) uses the Linear Inverted Pendulum Model (LIPM) dynamics to adapt the switching contact location and time. Then, consistent with the first stage, the LIPM with flywheel dynamics is used to regenerate the DCM and angular momentum trajectories at each control cycle. This is done by modulating the CoP and Centroidal Momentum Pivot (CMP) to realize a desired DCM at the end of current step. Simulation results show the merit of this reactive approach in generating robust and dynamically consistent walking patterns

    Effective field theories for baryons with two- and three-heavy quarks

    Full text link
    Baryons made of two or three heavy quarks can be described in the modern language of non-relativistic effective field theories. These, besides allowing a rigorous treatment of the systems, provide new insight in the nature of the three-body interaction in QCD.Comment: 7 pages, 1 figure; published versio

    Flavor independent systematics of excited baryons and intra-band transition

    Get PDF
    Transitions among excited nucleons are studied within a non-relativistic quark model with a deformed harmonic oscillator potential. The transition amplitudes are factorized into the ll-th moment and a geometrical factor. This fact leads to an analogous result to the ``Alaga-rule'' for baryons.Comment: 4 Pages, 2 figures, Talk given at XVI International Conference on Particles and Nuclei (PaNic02), Osaka, Japan, Sep.30 - Oct.4, 200

    Isolated Eigenvalues of the Ferromagnetic Spin-J XXZ Chain with Kink Boundary Conditions

    Full text link
    We investigate the low-lying excited states of the spin J ferromagnetic XXZ chain with Ising anisotropy Delta and kink boundary conditions. Since the third component of the total magnetization, M, is conserved, it is meaningful to study the spectrum for each fixed value of M. We prove that for J>= 3/2 the lowest excited eigenvalues are separated by a gap from the rest of the spectrum, uniformly in the length of the chain. In the thermodynamic limit, this means that there are a positive number of excitations above the ground state and below the essential spectrum

    Model-independent Study of Electric Dipole Transitions in Quarkonium

    Full text link
    The paper contains a systematic, model-independent treatment of electric dipole (E1) transitions in heavy quarkonium. Within the effective field theory framework of potential non-relativistic QCD (pNRQCD), we derive the complete set of relativistic corrections of relative order v^2 both for weakly and strongly-coupled quarkonia. The result supports and complements former results from potential model calculations.Comment: 42 pages, 9 figure

    Takahashi Integral Equation and High-Temperature Expansion of the Heisenberg Chain

    Full text link
    Recently a new integral equation describing the thermodynamics of the 1D Heisenberg model was discovered by Takahashi. Using the integral equation we have succeeded in obtaining the high temperature expansion of the specific heat and the magnetic susceptibility up to O((J/T)^{100}). This is much higher than those obtained so far by the standard methods such as the linked-cluster algorithm. Our results will be useful to examine various approximation methods to extrapolate the high temperature expansion to the low temperature region.Comment: 5 pages, 4 figures, 2 table

    Exact solutions of domain wall and spiral ground states in Hubbard models

    Full text link
    We construct a set of exact ground states with a localized ferromagnetic domain wall and an extended spiral structure in a deformed flat-band Hubbard model. In the case of quarter filling, we show the uniqueness of the ground state with a fixed magnetization. We discuss more realistic situation given by a band-bending perturbation, which can stabilize these curious structures. We study the scattering of a conduction electron by the domain wall and the spiral spins.Comment: 4 pages, 2 figures. To be published in J. Phys. Soc. Jpn. 73 (2004

    On the density matrix for the kink ground state of higher spin XXZ chain

    Full text link
    The exact expression for the density matrix of the kink ground state of higher spin XXZ chain is obtained
    • …
    corecore