1,541 research outputs found

    Environmental Conservation in Agriculture: Land Retirement Versus Changing Practices on Working Land

    Get PDF
    The study develops a conceptual framework for analyzing the allocation of conservation funds via selectively offering incentive payments to farmers for enrolling in one of two mutually exclusive agricultural conservation programs: retiring land from production or changing farming practices on land that remains in production. We investigate how the existence of a pre-fixed budget allocation between the programs affects the amounts of environmental benefits obtainable under alternative policy implementation schemes. The framework is applied to a major agricultural production region using field-scale data in conjunction with empirical models of land retirement and conservation tillage adoption, and a biophysical process simulation model for the environmental benefits of carbon sequestration and reduction in soil erosion.

    Long-term reliability of the figaro TGS 2600 solid-state methane sensor under low-Arctic conditions at Toolik Lake, Alaska

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Eugster, W., Laundre, J., Eugster, J., & Kling, G. W. Long-term reliability of the figaro TGS 2600 solid-state methane sensor under low-Arctic conditions at Toolik Lake, Alaska. Atmospheric Measurement Techniques, 13(5), (2020): 2681-2695, doi:10.5194/amt-13-2681-2020.The TGS 2600 was the first low-cost solid-state sensor that shows a response to ambient levels of CH4 (e.g., range ≈1.8–2.7 µmol mol−1). Here we present an empirical function to correct the TGS 2600 signal for temperature and (absolute) humidity effects and address the long-term reliability of two identical sensors deployed from 2012 to 2018. We assess the performance of the sensors at 30 min resolution and aggregated to weekly medians. Over the entire period the agreement between TGS-derived and reference CH4 mole fractions measured by a high-precision Los Gatos Research instrument was R2=0.42, with better results during summer (R2=0.65 in summer 2012). Using absolute instead of relative humidity for the correction of the TGS 2600 sensor signals reduced the typical deviation from the reference to less than ±0.1 µmol mol−1 over the full range of temperatures from −41 to 27 ∘C. At weekly resolution the two sensors showed a downward drift of signal voltages indicating that after 10–13 years a TGS 2600 may have reached its end of life. While the true trend in CH4 mole fractions measured by the high-quality reference instrument was 10.1 nmolmol−1yr−1 (2012–2018), part of the downward trend in sensor signal (ca. 40 %–60 %) may be due to the increase in CH4 mole fraction because the sensor voltage decreases with increasing CH4 mole fraction. Weekly median diel cycles tend to agree surprisingly well between the TGS 2600 and reference measurements during the snow-free season, but in winter the agreement is lower. We suggest developing separate functions for deducing CH4 mole fractions from TGS 2600 measurements under cold and warm conditions. We conclude that the TGS 2600 sensor can provide data of research-grade quality if it is adequately calibrated and placed in a suitable environment where cross-sensitivities to gases other than CH4 are of no concern.We acknowledge support received from Arctic LTER grants (grant nos. NSF-DEB-1637459, 1026843, 1754835, and NSF-PLR 1504006) and supplemental funding from the NSF-NEON and OPP-AON programs. Gaius R. Shaver (MBL) is acknowledged for initiating the study and supporting our activities in all aspects. ETH is acknowledge for supporting the purchase of the Fast Greenhouse Gas Analyzer that replaced the older Fast Methane Analyzer in 2016 (grant no. 0-43683-11)

    Physical pathways of nutrient supply in a small, ultraoligotrophic arctic lake during summer stratification

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/110013/1/lno20065121107.pd

    The Conservation Reserve Program in the Presence of a Working Land Alternative: Implications for Environmental Quality, Program Participation, and Income Transfer

    Get PDF
    The United States has invested large sums of resources in multiple conservation programs for agriculture over the past century. In this paper we focus on the impacts of program interactions. Specifically, using an integrated economic and bio-physical modeling framework, we consider the impacts of the presence of working land programs on a land retirement for an important agricultural region—the Upper Mississippi River Basin (UMRB). Compared to a land retirement only program, we find that the presence of a working land program for conservation tillage results in significantly lower predicted signups for land retirement at a given rental rate. We also find that the presence of both a large working land and land retirement program can result in more environmental benefits and income transfers than a land retirement only program can achieve

    Disorder-Induced Shift of Condensation Temperature for Dilute Trapped Bose Gases

    Full text link
    We determine the leading shift of the Bose-Einstein condensation temperature for an ultracold dilute atomic gas in a harmonic trap due to weak disorder by treating both a Gaussian and a Lorentzian spatial correlation for the quenched disorder potential. Increasing the correlation length from values much smaller than the geometric mean of the trap scale and the mean particle distance to much larger values leads first to an increase of the positive shift to a maximum at this critical length scale and then to a decrease.Comment: Author information under http://www.theo-phys.uni-essen.de/tp/ags/pelster_di

    Charge Transfer in Partition Theory

    Full text link
    The recently proposed Partition Theory (PT) [J.Phys.Chem.A 111, 2229 (2007)] is illustrated on a simple one-dimensional model of a heteronuclear diatomic molecule. It is shown that a sharp definition for the charge of molecular fragments emerges from PT, and that the ensuing population analysis can be used to study how charge redistributes during dissociation and the implications of that redistribution for the dipole moment. Interpreting small differences between the isolated parts' ionization potentials as due to environmental inhomogeneities, we gain insight into how electron localization takes place in H2+ as the molecule dissociates. Furthermore, by studying the preservation of the shapes of the parts as different parameters of the model are varied, we address the issue of transferability of the parts. We find good transferability within the chemically meaningful parameter regime, raising hopes that PT will prove useful in chemical applications.Comment: 12 pages, 16 figure

    Understanding the Effects of Climate Change via Disturbance on Pristine Arctic Lakes—Multitrophic Level Response and Recovery to a 12-Yr, Low-Level Fertilization Experiment

    Get PDF
    Effects of climate change-driven disturbance on lake ecosystems can be subtle; indirect effects include increased nutrient loading that could impact ecosystem function. We designed a low-level fertilization experiment to mimic persistent, climate change-driven disturbances (deeper thaw, greater weathering, or thermokarst failure) delivering nutrients to arctic lakes. We measured responses of pelagic trophic levels over 12 yr in a fertilized deep lake with fish and a shallow fishless lake, compared to paired reference lakes, and monitored recovery for 6 yr. Relative to prefertilization in the deep lake, we observed a maximum pelagic response in chl a (+201%), dissolved oxygen (DO, −43%), and zooplankton biomass (+88%) during the fertilization period (2001–2012). Other responses to fertilization, such as water transparency and fish relative abundance, were delayed, but both ultimately declined. Phyto- and zooplankton biomass and community composition shifted with fertilization. The effects of fertilization were less pronounced in the paired shallow lakes, because of a natural thermokarst failure likely impacting the reference lake. In the deep lake there was (a) moderate resistance to change in ecosystem functions at all trophic levels, (b) eventual responses were often nonlinear, and (c) postfertilization recovery (return) times were most rapid at the base of the food web (2–4 yr) while higher trophic levels failed to recover after 6 yr. The timing and magnitude of responses to fertilization in these arctic lakes were similar to responses in other lakes, suggesting indirect effects of climate change that modify nutrient inputs may affect many lakes in the future
    corecore