62 research outputs found

    ΠšΠΎΠ½Ρ‚Ρ€Π°ΡΡ‚ изобраТСния ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π°, наблюдаСмого Π² условиях задымлСния, ΠΏΡ€ΠΈ поляризационной Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΠΈ излучСния, рассСянного частицами Π΄Ρ‹ΠΌΠ°

    Get PDF
    The aim of the work was to study the contrasts of the images of an object observed in a smoky environment, using polarizing filtering of radiation scattered by smoke particles towards the observer, and without filtering. Prospects for developing optical accessories for firefighters to improve the observation of objects in smoke were evaluated by comparing image contrasts.The goal was achieved by experimentally simulating the process of transmitting images of a blackandwhite object with a sharp black/white transition boundary through various types of smoke aerosols using polarizing filtering of radiation scattered by smoke particles, and without filtering and evaluating image contrasts.Studies of image contrasts for different optical densities of smoke in two registration schemes were performed, when the receiving optical system is located near the illumination source of the object at a distance of β‰ˆ 150 mm from it, and when it is located at a distance from the illumination source of the object at a distance of β‰ˆ 800 mm.It is established that the method of forming the image of the object using polarization filtering of radiation backscattering (RBS) reduces the rate of image contrast reduction with an increase in optical smoke density compared to image registration without filtering (RBS).A significant difference in the contrasts of images recorded with filtration (RBS) and in the absence of it is observed for "light" fumes (smoldering of wood, cotton) at average optical densities of smoke.The results obtained can be used in the development of optical accessories for firefighter-rescuer to improve the conditions of observation of objects in adverse conditions of vision: smoke, vaporization, fog. ЦСлью Ρ€Π°Π±ΠΎΡ‚Ρ‹ являлось исслСдованиС контраста изобраТСния ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π°, наблюдаСмого Π² Π·Π°Π΄Ρ‹ΠΌΠ»Π΅Π½Π½ΠΎΠΉ срСдС, с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ поляризационной Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΠΈ излучСния, рассСянного частицами Π΄Ρ‹ΠΌΠ° Π² сторону Π½Π°Π±Π»ΡŽΠ΄Π°Ρ‚Π΅Π»Ρ, ΠΈ сопоставлСниС Π΄Π°Π½Π½ΠΎΠ³ΠΎ контраста с контрастом изобраТСния, Ρ„ΠΎΡ€ΠΌΠΈΡ€ΡƒΠ΅ΠΌΠΎΠ³ΠΎ Π±Π΅Π· Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΠΈ, для ΠΎΡ†Π΅Π½ΠΊΠΈ возмоТности Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡ‚Π° оптичСских принадлСТностСй ΠΏΠΎΠΆΠ°Ρ€Π½ΠΎΠ³ΠΎ-спасатСля, ΡƒΠ»ΡƒΡ‡ΡˆΠ°ΡŽΡ‰Π΅Π³ΠΎ Π²ΠΈΠ΄Π΅Π½ΠΈΠ΅ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ² Π² условиях дымообразования ΠΏΡ€ΠΈ ΠΏΠΎΠΆΠ°Ρ€Π΅.ДостиТСниС поставлСнной Ρ†Π΅Π»ΠΈ ΠΎΡΡƒΡ‰Π΅ΡΡ‚Π²Π»ΡΠ»ΠΎΡΡŒ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ модСлирования процСсса ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡ΠΈ ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ Ρ‡Ρ‘Ρ€Π½ΠΎ-Π±Π΅Π»ΠΎΠ³ΠΎ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π° с Ρ€Π΅Π·ΠΊΠΎΠΉ Π³Ρ€Π°Π½ΠΈΡ†Π΅ΠΉ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π° Ρ‡Ρ‘Ρ€Π½ΠΎΠ΅β€Š/β€ŠΠ±Π΅Π»ΠΎΠ΅ Ρ‡Π΅Ρ€Π΅Π· Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ Ρ‚ΠΈΠΏΡ‹ аэрозолСй Π΄Ρ‹ΠΌΠ° с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ поляризационной Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΠΈ излучСния, рассСянного частицами Π΄Ρ‹ΠΌΠ°, ΠΈ Π±Π΅Π· Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΠΈ ΠΈ ΠΎΡ†Π΅Π½ΠΊΠ΅ контрастов ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ.ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Ρ‹ исслСдования контрастов ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ для Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… оптичСских плотностСй Π΄Ρ‹ΠΌΠΎΠ² Π² Π΄Π²ΡƒΡ… схСмах рСгистрации, ΠΊΠΎΠ³Π΄Π° приёмная оптичСская систСма располоТСна Π²Π±Π»ΠΈΠ·ΠΈ источника подсвСтки ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π° Π½Π° расстоянии β‰ˆ 150 ΠΌΠΌ ΠΎΡ‚ Π½Π΅Π³ΠΎ, ΠΈ ΠΊΠΎΠ³Π΄Π° ΠΎΠ½Π° располоТСна Π½Π° ΡƒΠ΄Π°Π»Π΅Π½ΠΈΠΈ ΠΎΡ‚ источника подсвСтки ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π° Π½Π° расстоянии β‰ˆ 800 ΠΌΠΌ.УстановлСно, Ρ‡Ρ‚ΠΎ способ формирования изобраТСния ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π° с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ поляризационной Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΠΈ излучСния ΠΏΠΎΠΌΠ΅Ρ…ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ рассСяния (ПОР) позволяСт ΡΠ½ΠΈΠ·ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΡ контраста изобраТСния с ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ΠΌ оптичСской плотности Π΄Ρ‹ΠΌΠ° Π² сравнСнии с рСгистрациСй изобраТСния Π±Π΅Π· Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΠΈ ПОР. БущСствСнная Ρ€Π°Π·Π½ΠΈΡ†Π° Π² контрастах ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ, рСгистрируСмых с поляризационной отсСчкой ПОР ΠΈ Π² отсутствиС Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΠΈ, Π½Π°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ для «свСтлых» Π΄Ρ‹ΠΌΠΎΠ² (ΠΏΠΈΡ€ΠΎΠ»ΠΈΠ· дрСвСсины, Ρ‚Π»Π΅Π½ΠΈΠ΅ Ρ…Π»ΠΎΠΏΠΊΠ°) Π½Π° срСдних ΡƒΠ΄Π΅Π»ΡŒΠ½Ρ‹Ρ… оптичСских плотностях Π΄Ρ‹ΠΌΠ°.ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ ΠΏΡ€ΠΈ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ оптичСских принадлСТностСй ΠΏΠΎΠΆΠ°Ρ€Π½ΠΎΠ³ΠΎ-спасатСля для ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½ΠΈΡ условий наблюдСния ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ² Π² нСблагоприятных условиях видСния: Π·Π°Π΄Ρ‹ΠΌΠ»Π΅Π½ΠΈΠΈ, ΠΏΠ°Ρ€ΠΎΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΈ, Ρ‚ΡƒΠΌΠ°Π½Π΅.

    Π­Ρ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Ρ‚ΡƒΡˆΠ΅Π½ΠΈΡ ΠΏΠΎΠΆΠ°Ρ€Π° ΠΎΠ³Π½Π΅Ρ‚ΡƒΡˆΠ°Ρ‰ΠΈΠΌ ΠΏΠΎΡ€ΠΎΡˆΠΊΠΎΠΌ ΠΎΠ±Ρ‰Π΅Π³ΠΎ назначСния ΠΏΡ€ΠΈ нСстационарном взаимодСйствии Π΅Π³ΠΎ частиц с горящим вСщСством

    Get PDF
    Evaluation of the effectiveness of fire extinguishing by jet systems of powder fire extinguishing in conditions of non-stationary heat exchange processes and heterogeneous inhibition of active flame centers by powder particles was the aim of the work. The theoretical dependence of the amount of heat, absorbed by the particles of fire extinguishing powder, and the reaction rate of heterogeneous active centers of flame, inhibiting them, in non-stationary conditions of heat transfer, as well as inhibition reaction for fire extinguishing ink jet systems were obtained. The extinguishing of a flame with a fire extinguishing powder under non-stationary conditions is more effective, the smaller is the effective size of the powder particles, the longer is their stay in the combustion zone, and the shorter are the characteristic times of heat transfer and inhibition reaction. Comparison of the estimates of the characteristic duration of heat transfer and inhibition reaction for widely used fire extinguishing powders has shown a large inertia of the thermal mechanism of fire extinguishing, which greatly reduces its effectiveness at high speeds of powder particles in the combustion zone.ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π° ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Ρ‚ΡƒΡˆΠ΅Π½ΠΈΡ ΠΏΠΎΠΆΠ°Ρ€Π° струйными систСмами ΠΏΠΎΡ€ΠΎΡˆΠΊΠΎΠ²ΠΎΠ³ΠΎ ΠΏΠΎΠΆΠ°Ρ€ΠΎΡ‚ΡƒΡˆΠ΅Π½ΠΈΡ Π² условиях нСстационарности процСссов Ρ‚Π΅ΠΏΠ»ΠΎΠΎΠ±ΠΌΠ΅Π½Π° ΠΈ Π³Π΅Ρ‚Π΅Ρ€ΠΎΠ³Π΅Π½Π½ΠΎΠ³ΠΎ ингибирования частицами ΠΏΠΎΡ€ΠΎΡˆΠΊΠ° Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠ² ΠΏΠ»Π°ΠΌΠ΅Π½ΠΈ. ИсслСдованиС ΠΎΡΡƒΡ‰Π΅ΡΡ‚Π²Π»ΡΠ»ΠΎΡΡŒ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ тСорСтичСского модСлирования ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ Ρ‚ΡƒΡˆΠ΅Π½ΠΈΡ ΠΏΠΎΠΆΠ°Ρ€Π° ΠΈ Π³Π΅Ρ‚Π΅Ρ€ΠΎΠ³Π΅Π½Π½ΠΎΠ³ΠΎ ингибирования Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠ² ΠΏΠ»Π°ΠΌΠ΅Π½ΠΈ частицами ΠΎΠ³Π½Π΅Ρ‚ΡƒΡˆΠ°Ρ‰Π΅Π³ΠΎ ΠΏΠΎΡ€ΠΎΡˆΠΊΠ°. УстановлСно, Ρ‡Ρ‚ΠΎ Ρ‚ΡƒΡˆΠ΅Π½ΠΈΠ΅ ΠΏΠ»Π°ΠΌΠ΅Π½ΠΈ ΠΎΠ³Π½Π΅Ρ‚ΡƒΡˆΠ°Ρ‰ΠΈΠΌ ΠΏΠΎΡ€ΠΎΡˆΠΊΠΎΠΌ Π² нСстационарных условиях происходит Ρ‚Π΅ΠΌ эффСктивнСС, Ρ‡Π΅ΠΌ мСньшС эффСктивный Ρ€Π°Π·ΠΌΠ΅Ρ€ частиц ΠΏΠΎΡ€ΠΎΡˆΠΊΠ°, Ρ‡Π΅ΠΌ большС врСмя прСбывания ΠΈΡ… Π² Π·ΠΎΠ½Π΅ горСния ΠΈ Ρ‡Π΅ΠΌ мСньшС Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹Π΅ Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡ΠΈ Ρ‚Π΅ΠΏΠ»Π° частицам ΠΏΠΎΡ€ΠΎΡˆΠΊΠ° ΠΈ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ ингибирования Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠ² ΠΏΠ»Π°ΠΌΠ΅Π½ΠΈ. БопоставлСниС ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ‹Ρ… ΠΎΡ†Π΅Π½ΠΎΠΊ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹Ρ… Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ тСплопСрСноса ΠΈ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ ингибирования для ΡˆΠΈΡ€ΠΎΠΊΠΎ примСняСмых Π² настоящСС врСмя ΠΎΠ³Π½Π΅Ρ‚ΡƒΡˆΠ°Ρ‰ΠΈΡ… ΠΏΠΎΡ€ΠΎΡˆΠΊΠΎΠ² ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΎ Π±ΠΎΠ»ΡŒΡˆΡƒΡŽ ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΎΠ½Π½ΠΎΡΡ‚ΡŒ Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ° Ρ‚ΡƒΡˆΠ΅Π½ΠΈΡ ΠΏΠΎΠΆΠ°Ρ€Π°, Ρ‡Ρ‚ΠΎ сильно сниТаСт Π΅Π³ΠΎ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ Π±ΠΎΠ»ΡŒΡˆΠΈΡ… скоростях частиц ΠΏΠΎΡ€ΠΎΡˆΠΊΠ° Π² Π·ΠΎΠ½Π΅ горСния

    МодСль Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ° Ρ‚ΡƒΡˆΠ΅Π½ΠΈΡ ΠΏΠΎΠΆΠ°Ρ€Π° подкласса А1 ΠΎΠ³Π½Π΅Ρ‚ΡƒΡˆΠ°Ρ‰ΠΈΠΌ ΠΏΠΎΡ€ΠΎΡˆΠΊΠΎΠΌ ΠΎΠ±Ρ‰Π΅Π³ΠΎ назначСния Π² условиях нСстационарного Ρ‚Π΅ΠΏΠ»ΠΎΠΎΠ±ΠΌΠ΅Π½Π°

    Get PDF
    The aim of the paper was to develop a model of thermal extinguishing mechanism using dry chemical powder taking into account the inertia of heat transfer to powder particles during unsteady heat exchange to identify the optimal conditions for extinguishing of A1 class fires with powders.The method of experimental and mathematical modelling of fire extinguishing process using dry chemical powder with short-term effect on the fire was used to achieve the goal. The experimental dependences of the extinguishing time and unit consumption of the extinguishing powder on the intensity of the powder supply to the combustion zone in extinguishing of subclass A1 fire in same area and in a limited volume were obtained. The mathematical model of a thermal extinguishing mechanism using dry chemical powder has been developed, taking into account the inertia of heat transfer to powder particles during unsteady heat exchange.Analysis of the regularities of extinguishing the subclass A1 fire using powder with a short feeding it into the fire indicates the presence of optimum values of unity consumption of powder on the fire from the intensity of feeding it into the fire. The presence of this optimum is due to the inertia of extinguishing the subclass A1 fire using powder due to the finiteness of the heat transfer time to the particles of the extinguishing powder and the limited time of interaction of particles with the combustible material.The theoretical analysis of the fire extinguishing process over the area taking into account the inertia of heat transfer to the powder particles at non-stationary heat exchange are carried out. The results of the analysis are in qualitative agreement with the results of the experimental study of the regularities of extinguishing of model fire foci of subclass A1 with General-purpose fire extinguishing powder.ЦСлью Ρ€Π°Π±ΠΎΡ‚Ρ‹ являлась Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΌΠΎΠ΄Π΅Π»ΠΈ Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ° Ρ‚ΡƒΡˆΠ΅Π½ΠΈΡ ΠΏΠΎΠΆΠ°Ρ€Π° ΠΎΠ³Π½Π΅Ρ‚ΡƒΡˆΠ°Ρ‰ΠΈΠΌ ΠΏΠΎΡ€ΠΎΡˆΠΊΠΎΠΌ ΠΎΠ±Ρ‰Π΅Π³ΠΎ назначСния с ΡƒΡ‡Ρ‘Ρ‚ΠΎΠΌ инСрционности ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡ΠΈ Ρ‚Π΅ΠΏΠ»Π° частицам ΠΏΠΎΡ€ΠΎΡˆΠΊΠ° ΠΏΡ€ΠΈ нСстационарном Ρ‚Π΅ΠΏΠ»ΠΎΠΎΠ±ΠΌΠ΅Π½Π΅ для выявлСния ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… условий Ρ‚ΡƒΡˆΠ΅Π½ΠΈΡ ΠΏΠΎΡ€ΠΎΡˆΠΊΠ°ΠΌΠΈ ΠΏΠΎΠΆΠ°Ρ€ΠΎΠ² подкласса А1.ДостиТСниС поставлСнной Ρ†Π΅Π»ΠΈ ΠΎΡΡƒΡ‰Π΅ΡΡ‚Π²Π»ΡΠ»ΠΎΡΡŒ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΈ матСматичСского модСлирования процСсса Ρ‚ΡƒΡˆΠ΅Π½ΠΈΡ ΠΏΠΎΠΆΠ°Ρ€Π° подкласса А1 ΠΎΠ³Π½Π΅Ρ‚ΡƒΡˆΠ°Ρ‰ΠΈΠΌ ΠΏΠΎΡ€ΠΎΡˆΠΊΠΎΠΌ ΠΎΠ±Ρ‰Π΅Π³ΠΎ назначСния ΠΏΡ€ΠΈ ΠΊΡ€Π°Ρ‚ΠΊΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΌ воздСйствии Π½Π° ΠΎΡ‡Π°Π³ ΠΏΠΎΠΆΠ°Ρ€Π°. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Π΅ зависимости Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Ρ‚ΡƒΡˆΠ΅Π½ΠΈΡ ΠΈ ΡƒΠ΄Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ расхода ΠΎΠ³Π½Π΅Ρ‚ΡƒΡˆΠ°Ρ‰Π΅Π³ΠΎ ΠΏΠΎΡ€ΠΎΡˆΠΊΠ° ΠΎΡ‚ интСнсивности ΠΏΠΎΠ΄Π°Ρ‡ΠΈ ΠΏΠΎΡ€ΠΎΡˆΠΊΠ° Π² Π·ΠΎΠ½Ρƒ горСния ΠΏΡ€ΠΈ Ρ‚ΡƒΡˆΠ΅Π½ΠΈΠΈ ΠΏΠΎΠΆΠ°Ρ€Π° подкласса А1 локально ΠΏΠΎ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ ΠΈ локально Π² ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½ΠΎΠΌ ΠΎΠ±ΡŠΡ‘ΠΌΠ΅.Анализ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… закономСрностСй Ρ‚ΡƒΡˆΠ΅Π½ΠΈΡ ΠΏΠΎΠΆΠ°Ρ€Π° подкласса А1 ΠΎΠ³Π½Π΅Ρ‚ΡƒΡˆΠ°Ρ‰ΠΈΠΌ ΠΏΠΎΡ€ΠΎΡˆΠΊΠΎΠΌ ΠΎΠ±Ρ‰Π΅Π³ΠΎ назначСния ΠΏΡ€ΠΈ ΠΊΡ€Π°Ρ‚ΠΊΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΌ воздСйствии Π½Π° ΠΎΡ‡Π°Π³ возгорания ΠΏΠΎΠΊΠ°Π·Π°Π» Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ интСнсивности ΠΏΠΎΠ΄Π°Ρ‡ΠΈ ΠΎΠ³Π½Π΅Ρ‚ΡƒΡˆΠ°Ρ‰Π΅Π³ΠΎ ΠΏΠΎΡ€ΠΎΡˆΠΊΠ° Π² Π·ΠΎΠ½Ρƒ ΠΏΠΎΠΆΠ°Ρ€Π°, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ рСализуСтся ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΉ ΡƒΠ΄Π΅Π»ΡŒΠ½Ρ‹ΠΉ расход ΠΏΠΎΡ€ΠΎΡˆΠΊΠ° Π½Π° Ρ‚ΡƒΡˆΠ΅Π½ΠΈΠ΅ ΠΏΠΎΠΆΠ°Ρ€Π°. НаличиС Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΎΠΏΡ‚ΠΈΠΌΡƒΠΌΠ° связано с ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΎΠ½Π½ΠΎΡΡ‚ΡŒΡŽ Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ° Ρ‚ΡƒΡˆΠ΅Π½ΠΈΡ ΠΏΠΎΠΆΠ°Ρ€Π° подкласса А1 ΠΏΠΎΡ€ΠΎΡˆΠΊΠ°ΠΌΠΈ вслСдствиС конСчности Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡ΠΈ Ρ‚Π΅ΠΏΠ»Π°, запасённого ΠΏΡ€ΠΈ ΠΏΠΎΠΆΠ°Ρ€Π΅, частицам ΠΎΠ³Π½Π΅Ρ‚ΡƒΡˆΠ°Ρ‰Π΅Π³ΠΎ ΠΏΠΎΡ€ΠΎΡˆΠΊΠ° ΠΈ ограничСнности Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ взаимодСйствия частиц с Π³ΠΎΡ€ΡŽΡ‡ΠΈΠΌ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠΌ.ΠŸΡ€ΠΎΠ²Π΅Π΄Ρ‘Π½ тСорСтичСский Π°Π½Π°Π»ΠΈΠ· процСсса Ρ‚ΡƒΡˆΠ΅Π½ΠΈΡ ΠΏΠΎΠΆΠ°Ρ€Π° ΠΏΠΎ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ с ΡƒΡ‡Ρ‘Ρ‚ΠΎΠΌ инСрционности ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡ΠΈ Ρ‚Π΅ΠΏΠ»Π° частицам ΠΏΠΎΡ€ΠΎΡˆΠΊΠ° ΠΏΡ€ΠΈ нСстационарном Ρ‚Π΅ΠΏΠ»ΠΎΠΎΠ±ΠΌΠ΅Π½Π΅. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Π°Π½Π°Π»ΠΈΠ·Π° качСствСнно ΡΠΎΠ³Π»Π°ΡΡƒΡŽΡ‚ΡΡ с Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌΠΈ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ изучСния закономСрностСй Ρ‚ΡƒΡˆΠ΅Π½ΠΈΡ ΠΏΠΎ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ ΠΌΠΎΠ΄Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΎΡ‡Π°Π³ΠΎΠ² ΠΏΠΎΠΆΠ°Ρ€Π° подкласса А1 ΠΎΠ³Π½Π΅Ρ‚ΡƒΡˆΠ°Ρ‰ΠΈΠΌ ΠΏΠΎΡ€ΠΎΡˆΠΊΠΎΠΌ ΠΎΠ±Ρ‰Π΅Π³ΠΎ назначСния

    ΠžΡ†Π΅Π½ΠΊΠ° эффСктивности ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² Π³Π΅Ρ‚Π΅Ρ€ΠΎΠ³Π΅Π½Π½ΠΎΠ³ΠΎ ΠΈ Π³ΠΎΠΌΠΎΠ³Π΅Π½Π½ΠΎΠ³ΠΎ ингибирования частицами ΠΎΠ³Π½Π΅Ρ‚ΡƒΡˆΠ°Ρ‰Π΅Π³ΠΎ ΠΏΠΎΡ€ΠΎΡˆΠΊΠ° Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… частиц ΠΏΠ»Π°ΠΌΠ΅Π½ΠΈ с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ скорости ΠΈΡ… образования

    Get PDF
    The relevance of the work is due to the need to improve the technology of extinguishing fire with extinguishing powders based on the study of the laws of the physicochemical processes of interrupting chain combustion reactions, in particular, heterogeneous and homogeneous mechanisms of inhibition of active flame centers by powder particles. The aim of the work is to evaluate the effectiveness of non-stationary mechanisms of heterogeneous and homogeneous inhibition of active flame particles by fire extinguishing powder particles taking into account the rate of their birth, as well as to compare the contributions of each of the mechanisms to the result of fire extinguishing. Mathematical modeling of the mechanisms of heterogeneous and homogeneous inhibition of active flame particles by fire extinguishing powder particles is carried out, taking into account the rate of birth of active particles of in flame. The theoretical dependences of the rates of reactions of heterogeneous and homogeneous inhibition of active flame particles on the dispersed characteristics of powder particles, their residence time in the zone of flame and the characteristic durations of inhibition reactions are obtained. It is established that the condition for the effective recovery inhibition of active particles of flame by the mechanisms under consideration is exceeding the time of interaction of powder particles with active flame particles over the duration of inhibition processes, as well as an excess of the rate of inhibition of active flame particles over the rate of their birth. The rate of inhibition of active particles of flame depends on the particle size of the extinguishing powder, namely, the smaller the particle size of the powder, the greater the rate of inhibition. This dependence is observed explicitly for the mechanism of heterogeneous inhibition of active particles of flame and implicitly for the mechanism of homogeneous inhibition through the dependence of the rate of thermal production of metal oxide radicals of the extinguishing powder involved in this process on the size of the powder particles. The presence of two stages in the implementation of the mechanism of homogeneous inhibition of active flame particles (thermal production of metal oxide radicals of the powder substances used and the inhibition process itself) allows us to consider this mechanism of extraction of active particles longer than the mechanism of heterogeneous reduction, and, therefore, it does not significantly contribute to the chemical process of extinguishing a fire.Для ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΡΡ‚Π²ΠΎΠ²Π°Π½ΠΈΡ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ Ρ‚ΡƒΡˆΠ΅Π½ΠΈΡ ΠΏΠΎΠΆΠ°Ρ€Π° ΠΎΠ³Π½Π΅Ρ‚ΡƒΡˆΠ°Ρ‰ΠΈΠΌ ΠΏΠΎΡ€ΠΎΡˆΠΊΠΎΠΌ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ Π°Π½Π°Π»ΠΈΠ· ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² Ρ‚ΡƒΡˆΠ΅Π½ΠΈΡ ΠΏΠΎΠΆΠ°Ρ€Π° Π΄Π°Π½Π½Ρ‹ΠΌ вСщСством, основанных Π½Π° Ρ„ΠΈΠ·ΠΈΠΊΠΎ-химичСских процСссах прСрывания Ρ†Π΅ΠΏΠ½Ρ‹Ρ… Ρ€Π΅Π°ΠΊΡ†ΠΈΠΉ горСния. Π’Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Π° ΠΎΡ†Π΅Π½ΠΊΠ° эффСктивности ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² Π³Π΅Ρ‚Π΅Ρ€ΠΎΠ³Π΅Π½Π½ΠΎΠ³ΠΎ ΠΈ Π³ΠΎΠΌΠΎΠ³Π΅Π½Π½ΠΎΠ³ΠΎ ингибирования частицами ΠΏΠΎΡ€ΠΎΡˆΠΊΠ° Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… частиц ΠΏΠ»Π°ΠΌΠ΅Π½ΠΈ с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ скорости ΠΈΡ… образования, Π° Ρ‚Π°ΠΊΠΆΠ΅ сопоставлСниС ΠΈΡ… Π²ΠΊΠ»Π°Π΄ΠΎΠ² Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ Ρ‚ΡƒΡˆΠ΅Π½ΠΈΡ ΠΏΠΎΠΆΠ°Ρ€Π°. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ матСматичСскоС ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² Π³Π΅Ρ‚Π΅Ρ€ΠΎΠ³Π΅Π½Π½ΠΎΠ³ΠΎ ΠΈ Π³ΠΎΠΌΠΎΠ³Π΅Π½Π½ΠΎΠ³ΠΎ ингибирования частицами ΠΎΠ³Π½Π΅Ρ‚ΡƒΡˆΠ°Ρ‰Π΅Π³ΠΎ ΠΏΠΎΡ€ΠΎΡˆΠΊΠ° Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… частиц ΠΏΠ»Π°ΠΌΠ΅Π½ΠΈ с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ скорости ΠΈΡ… образования. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ тСорСтичСскиС зависимости скоростСй Ρ€Π΅Π°ΠΊΡ†ΠΈΠΉ Π³Π΅Ρ‚Π΅Ρ€ΠΎΠ³Π΅Π½Π½ΠΎΠ³ΠΎ ΠΈ Π³ΠΎΠΌΠΎΠ³Π΅Π½Π½ΠΎΠ³ΠΎ ингибирования Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… частиц ΠΏΠ»Π°ΠΌΠ΅Π½ΠΈ ΠΎΡ‚ диспСрсных характСристик частиц ΠΏΠΎΡ€ΠΎΡˆΠΊΠ°, Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ прСбывания ΠΈΡ… Π² Π·ΠΎΠ½Π΅ горСния ΠΈ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹Ρ… Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΉ. УстановлСно, Ρ‡Ρ‚ΠΎ условиСм эффСктивного восстановлСния Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… частиц ΠΏΠ»Π°ΠΌΠ΅Π½ΠΈ рассматриваСмыми ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ°ΠΌΠΈ являСтся ΠΏΡ€Π΅Π²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ взаимодСйствия частиц ΠΏΠΎΡ€ΠΎΡˆΠΊΠ° с Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ частицами ΠΏΠ»Π°ΠΌΠ΅Π½ΠΈ Π½Π°Π΄ Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡΠΌΠΈ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΉ ингибирования, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΡ€Π΅Π²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ скоростСй Π΄Π°Π½Π½Ρ‹Ρ… Ρ€Π΅Π°ΠΊΡ†ΠΈΠΉ скорости ΠΈΡ… образования. Π‘ΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ восстановлСния Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… частиц ΠΏΠ»Π°ΠΌΠ΅Π½ΠΈ зависит ΠΎΡ‚ Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠ² частиц ΠΎΠ³Π½Π΅Ρ‚ΡƒΡˆΠ°Ρ‰Π΅Π³ΠΎ ΠΏΠΎΡ€ΠΎΡˆΠΊΠ°: Ρ‡Π΅ΠΌ мСньшС Ρ€Π°Π·ΠΌΠ΅Ρ€ частиц ΠΏΠΎΡ€ΠΎΡˆΠΊΠ°, Ρ‚Π΅ΠΌ большС ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ восстановлСния. Вакая Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ Π½Π°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ Π² явном Π²ΠΈΠ΄Π΅ для ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ° Π³Π΅Ρ‚Π΅Ρ€ΠΎΠ³Π΅Π½Π½ΠΎΠ³ΠΎ ингибирования Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… частиц ΠΏΠ»Π°ΠΌΠ΅Π½ΠΈ ΠΈ Π² нСявном Π²ΠΈΠ΄Π΅ для ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ° Π³ΠΎΠΌΠΎΠ³Π΅Π½Π½ΠΎΠ³ΠΎ ингибирования Ρ‡Π΅Ρ€Π΅Π· Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ скорости тСрмообразования Ρ€Π°Π΄ΠΈΠΊΠ°Π»ΠΎΠ² оксидов ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠ² ΠΎΠ³Π½Π΅Ρ‚ΡƒΡˆΠ°Ρ‰Π΅Π³ΠΎ ΠΏΠΎΡ€ΠΎΡˆΠΊΠ°, ΡƒΡ‡Π°ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… Π² Π΄Π°Π½Π½ΠΎΠΌ процСссС, ΠΎΡ‚ Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠ² частиц ΠΏΠΎΡ€ΠΎΡˆΠΊΠ°. НаличиС Π΄Π²ΡƒΡ… стадий Π² Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ° Π³ΠΎΠΌΠΎΠ³Π΅Π½Π½ΠΎΠ³ΠΎ ингибирования Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… частиц ΠΏΠ»Π°ΠΌΠ΅Π½ΠΈ (тСрмообразования Ρ€Π°Π΄ΠΈΠΊΠ°Π»ΠΎΠ² оксидов ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠ² примСняСмых ΠΏΠΎΡ€ΠΎΡˆΠΊΠΎΠ²Ρ‹Ρ… вСщСств ΠΈ собствСнно самого процСсса ингибирования) позволяСт ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Π΄Π°Π½Π½Ρ‹ΠΉ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ восстановлСния Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… частиц Π±ΠΎΠ»Π΅Π΅ Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ, Ρ‡Π΅ΠΌ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ Π³Π΅Ρ‚Π΅Ρ€ΠΎΠ³Π΅Π½Π½ΠΎΠ³ΠΎ ингибирования, Π° ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, Π½Π΅ вносящим сущСствСнного Π²ΠΊΠ»Π°Π΄Π° Π² химичСский процСсс Ρ‚ΡƒΡˆΠ΅Π½ΠΈΡ ΠΏΠΎΠΆΠ°Ρ€Π°. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Ρ€Π°Π±ΠΎΡ‚Ρ‹ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½Ρ‹ ΠΏΡ€ΠΈ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ составов ΠΎΠ³Π½Π΅Ρ‚ΡƒΡˆΠ°Ρ‰ΠΈΡ… ΠΏΠΎΡ€ΠΎΡˆΠΊΠΎΠ², Π° Ρ‚Π°ΠΊΠΆΠ΅ Π² ΠΏΠΎΠΆΠ°Ρ€ΠΎΡ‚ΡƒΡˆΠ΅Π½ΠΈΠΈ для Π²Ρ‹Π±ΠΎΡ€Π° ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠΉ скорости ΠΏΠΎΠ΄Π°Ρ‡ΠΈ ΠΎΠ³Π½Π΅Ρ‚ΡƒΡˆΠ°Ρ‰Π΅Π³ΠΎ ΠΏΠΎΡ€ΠΎΡˆΠΊΠ° Π² ΠΎΡ‡Π°Π³ ΠΏΠΎΠΆΠ°Ρ€Π°

    Π”Π’Π£Π₯ΠšΠΠΠΠ›Π¬ΠΠ«Π™ ΠžΠŸΠ’Π˜Π§Π•Π‘ΠšΠ˜Π™ Π”Π«ΠœΠžΠ’ΠžΠ™ Π˜Π—Π’Π•Π©ΠΠ’Π•Π›Π¬

    Get PDF
    The optical scheme of smoke fire detector based on the laser source and which allows to realize method used in linear smoke detectors along with the traditional fire detection method for point smoke fire detectors (after intensity level of emission scattered by particles of smoke) is offered. Monitoring of the environment state by two independent channels increases the sensitivity of the detector and fire detection reliability. The conditions which provide high sensitivity of Β«linearΒ» channel of smoke detection with low optical base were found. Model experiments to detect the smoke by experimental model of developed optical scheme of smoke fire detector are conducted.ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π° оптичСская схСма Π΄Ρ‹ΠΌΠΎΠ²ΠΎΠ³ΠΎ ΠΏΠΎΠΆΠ°Ρ€Π½ΠΎΠ³ΠΎ извСщатСля Π½Π° основС Π»Π°Π·Π΅Ρ€Π½ΠΎΠ³ΠΎ источника излучСния, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰Π°Ρ Ρ€Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Ρ‚ΡŒ наряду с Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½Ρ‹ΠΌ для Ρ‚ΠΎΡ‡Π΅Ρ‡Π½Ρ‹Ρ… Π΄Ρ‹ΠΌΠΎΠ²Ρ‹Ρ… ΠΈΠ·Π²Π΅Ρ‰Π°Ρ‚Π΅Π»Π΅ΠΉ способом обнаруТСния ΠΏΠΎΠΆΠ°Ρ€Π° (ΠΏΠΎ ΡƒΡ€ΠΎΠ²Π½ΡŽ интСнсивности излучСния, рассСянного частицами Π΄Ρ‹ΠΌΠ°) способ, примСняСмый Π² Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… Π΄Ρ‹ΠΌΠΎΠ²Ρ‹Ρ… извСщатСлях. ΠœΠΎΠ½ΠΈΡ‚ΠΎΡ€ΠΈΠ½Π³ состояния срСды ΠΏΠΎ Π΄Π²ΡƒΠΌ нСзависимым ΠΊΠ°Π½Π°Π»Π°ΠΌ ΠΏΠΎΠ²Ρ‹ΡˆΠ°Π΅Ρ‚ Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ извСщатСля ΠΈ Π½Π°Π΄Π΅ΠΆΠ½ΠΎΡΡ‚ΡŒ обнаруТСния ΠΏΠΎΠΆΠ°Ρ€Π°. НайдСны условия, ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ Π²Ρ‹ΡΠΎΠΊΡƒΡŽ Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Β«Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎΒ» ΠΊΠ°Π½Π°Π»Π° обнаруТСния Π΄Ρ‹ΠΌΠ° ΠΏΡ€ΠΈ ΠΌΠ°Π»ΠΎΠΉ оптичСской Π±Π°Π·Π΅. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Ρ‹ ΠΌΠΎΠ΄Π΅Π»ΡŒΠ½Ρ‹Π΅ экспСримСнты ΠΏΠΎ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΈΡŽ Π΄Ρ‹ΠΌΠ° ΠΌΠ°ΠΊΠ΅Ρ‚ΠΎΠΌ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠΉ оптичСской схСмы Π΄Ρ‹ΠΌΠΎΠ²ΠΎΠ³ΠΎ извСщатСля

    ΠœΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ° Π³Π΅Ρ‚Π΅Ρ€ΠΎΠ³Π΅Π½Π½ΠΎΠ³ΠΎ ингибирования Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠ² ΠΏΠ»Π°ΠΌΠ΅Π½ΠΈ струйной горящСй систСмы частицами ΠΎΠ³Π½Π΅Ρ‚ΡƒΡˆΠ°Ρ‰Π΅Π³ΠΎ ΠΏΠΎΡ€ΠΎΡˆΠΊΠ°

    Get PDF
    The relevance of the work is due to the lack of a physical interpretation of the process of extinguishing jet burning systems with fire extinguishing powders, which is important for ensuring effective fire extinguishing at gas and oil complexes and hazardous chemical industries. A mathematical model of the reaction kinetics of heterogeneous inhibition of active flame centers of a jet burning system by fire extinguishing powder particles in an unsteady mode is considered in the approximation of a purely molecular transfer of matter in the reaction zone. The regularities of the mechanism of heterogeneous inhibition of the active flame centers by the particles of the extinguishing powder under conditions when the active particles of the combustion products participate not only in diffuse, but also in convective transport are established. It is shown, that the convective motion of the active flame centers increases the reaction rate of heterogeneous inhibition of their particles of the extinguishing agent. The results obtained allow us to optimize the conditions for the supply of fire extinguishing powder to the jet burning medium for effective flame suppression.ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Ρ€Π°Π±ΠΎΡ‚Ρ‹ обусловлСна отсутствиСм Π½Π° настоящСС врСмя физичСской ΠΈΠ½Ρ‚Π΅Ρ€ΠΏΡ€Π΅Ρ‚Π°Ρ†ΠΈΠΈ процСсса Ρ‚ΡƒΡˆΠ΅Π½ΠΈΡ струйных горящих систСм ΠΎΠ³Π½Π΅Ρ‚ΡƒΡˆΠ°Ρ‰ΠΈΠΌΠΈ ΠΏΠΎΡ€ΠΎΡˆΠΊΠ°ΠΌΠΈ, Π²Π°ΠΆΠ½ΠΎΠΉ для обСспСчСния эффСктивного Ρ‚ΡƒΡˆΠ΅Π½ΠΈΡ ΠΏΠΎΠΆΠ°Ρ€ΠΎΠ² Π½Π° газонСфтяных комплСксах ΠΈ опасных химичСских производствах. РассмотрСна матСматичСская модСль ΠΊΠΈΠ½Π΅Ρ‚ΠΈΠΊΠΈ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ Π³Π΅Ρ‚Π΅Ρ€ΠΎΠ³Π΅Π½Π½ΠΎΠ³ΠΎ ингибирования Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠ² ΠΏΠ»Π°ΠΌΠ΅Π½ΠΈ струйной горящСй систСмы частицами ΠΎΠ³Π½Π΅Ρ‚ΡƒΡˆΠ°Ρ‰Π΅Π³ΠΎ ΠΏΠΎΡ€ΠΎΡˆΠΊΠ° Π² Π½Π΅ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅ΠΌΡΡ Ρ€Π΅ΠΆΠΈΠΌΠ΅ Π² ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΠΈ чисто молСкулярного пСрСноса вСщСства Π² Π·ΠΎΠ½Π΅ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ. УстановлСны ΠΎΠ±Ρ‰ΠΈΠ΅ закономСрности ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ° Π³Π΅Ρ‚Π΅Ρ€ΠΎΠ³Π΅Π½Π½ΠΎΠ³ΠΎ ингибирования Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠ² ΠΏΠ»Π°ΠΌΠ΅Π½ΠΈ частицами ΠΎΠ³Π½Π΅Ρ‚ΡƒΡˆΠ°Ρ‰Π΅Π³ΠΎ ΠΏΠΎΡ€ΠΎΡˆΠΊΠ° Π² условиях, ΠΊΠΎΠ³Π΄Π° Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Π΅ частицы ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ² горСния ΡƒΡ‡Π°ΡΡ‚Π²ΡƒΡŽΡ‚ Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π² Π΄ΠΈΡ„Ρ„ΡƒΠ·ΠΈΠΎΠ½Π½ΠΎΠΌ, Π½ΠΎ ΠΈ Π² ΠΊΠΎΠ½Π²Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΌ пСрСносС. Показано, Ρ‡Ρ‚ΠΎ ΠΊΠΎΠ½Π²Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠ² ΠΏΠ»Π°ΠΌΠ΅Π½ΠΈ ΠΏΠΎΠ²Ρ‹ΡˆΠ°Π΅Ρ‚ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ Π³Π΅Ρ‚Π΅Ρ€ΠΎΠ³Π΅Π½Π½ΠΎΠ³ΠΎ ингибирования ΠΈΡ… частицами ΠΎΠ³Π½Π΅Ρ‚ΡƒΡˆΠ°Ρ‰Π΅Π³ΠΎ вСщСства. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ условия ΠΏΠΎΠ΄Π°Ρ‡ΠΈ ΠΎΠ³Π½Π΅Ρ‚ΡƒΡˆΠ°Ρ‰Π΅Π³ΠΎ ΠΏΠΎΡ€ΠΎΡˆΠΊΠ° Π² ΡΡ‚Ρ€ΡƒΠΉΠ½ΡƒΡŽ Π³ΠΎΡ€ΡΡ‰ΡƒΡŽ систСму для эффСктивного подавлСния ΠΏΠ»Π°ΠΌΠ΅Π½ΠΈ

    Transition from fractal to non-fractal scalings in growing scale-free networks

    Full text link
    Real networks can be classified into two categories: fractal networks and non-fractal networks. Here we introduce a unifying model for the two types of networks. Our model network is governed by a parameter qq. We obtain the topological properties of the network including the degree distribution, average path length, diameter, fractal dimensions, and betweenness centrality distribution, which are controlled by parameter qq. Interestingly, we show that by adjusting qq, the networks undergo a transition from fractal to non-fractal scalings, and exhibit a crossover from `large' to small worlds at the same time. Our research may shed some light on understanding the evolution and relationships of fractal and non-fractal networks.Comment: 7 pages, 3 figures, definitive version accepted for publication in EPJ

    Network centrality: an introduction

    Full text link
    Centrality is a key property of complex networks that influences the behavior of dynamical processes, like synchronization and epidemic spreading, and can bring important information about the organization of complex systems, like our brain and society. There are many metrics to quantify the node centrality in networks. Here, we review the main centrality measures and discuss their main features and limitations. The influence of network centrality on epidemic spreading and synchronization is also pointed out in this chapter. Moreover, we present the application of centrality measures to understand the function of complex systems, including biological and cortical networks. Finally, we discuss some perspectives and challenges to generalize centrality measures for multilayer and temporal networks.Comment: Book Chapter in "From nonlinear dynamics to complex systems: A Mathematical modeling approach" by Springe

    Scale-free models for the structure of business firm networks

    Get PDF
    We study firm collaborations in the life sciences and the information and communication technology sectors. We propose an approach to characterize industrial leadership using k-shell decomposition, with top-ranking firms in terms of market value in higher k-shell layers. We find that the life sciences industry network consists of three distinct components: a β€œnucleus,” which is a small well-connected subgraph, β€œtendrils,” which are small subgraphs consisting of small degree nodes connected exclusively to the nucleus, and a β€œbulk body,” which consists of the majority of nodes. Industrial leaders, i.e., the largest companies in terms of market value, are in the highest k-shells of both networks. The nucleus of the life sciences sector is very stable: once a firm enters the nucleus, it is likely to stay there for a long time. At the same time we do not observe the above three components in the information and communication technology sector. We also conduct a systematic study of these three components in random scale-free networks. Our results suggest that the sizes of the nucleus and the tendrils in scale-free networks decrease as the exponent of the power-law degree distribution Ξ» increases, and disappear for Ξ»β‰₯3. We compare the k-shell structure of random scale-free model networks with two real-world business firm networks in the life sciences and in the information and communication technology sectors. We argue that the observed behavior of the k-shell structure in the two industries is consistent with the coexistence of both preferential and random agreements in the evolution of industrial networks

    КОНБВРУКЦИЯ И ΠΠ›Π“ΠžΠ Π˜Π’Πœ Π ΠΠ‘ΠžΠ’Π« Π›ΠΠ—Π•Π ΠΠžΠ“Πž ΠšΠžΠœΠ‘Π˜ΠΠ˜Π ΠžΠ’ΠΠΠΠžΠ“Πž ΠŸΠžΠ–ΠΠ ΠΠžΠ“Πž Π˜Π—Π’Π•Π©ΠΠ’Π•Π›Π―

    Get PDF
    The point optical smoke detector is currently the most effective means of fire detection at the early stage of its occurrence. The urgent task for this type of detector is to increase its sensitivity to Β«blackΒ» smoke and ensure resilience to the effects of electromagnetic interference and particle smoke origin.The objective of this work is to develop a structure and algorithm of point combined fire detector that provides high sensitivity to various types of fumes, detection rate and high noise immunity.Β The decision of the current objective is carried out using the proposed optical scheme of the dual-channel devices of smoke detection (for control of the radiation intensities scattered by smoke particles and passed through the smoke).The design and algorithm of the combined fire detector comprising a dual-channel laser device of smoke detection and carbon monoxide detector is developed.The results of the made detector tests indicate about its increased in comparison with the conventional single-channel point smoke fire detector sensitivity to various types of fumes and detection rate of fires. The high functional characteristics of the detector are provided with application additional channel of smoke detection (to intensity change of transmitted radiation through it) created by the requirements for unrestricted entry of smoke in the area of control and effective algorithm for processing of recorded signals.Β Π’ΠΎΡ‡Π΅Ρ‡Π½Ρ‹ΠΉ оптичСский Π΄Ρ‹ΠΌΠΎΠ²ΠΎΠΉ ΠΏΠΎΠΆΠ°Ρ€Π½Ρ‹ΠΉ ΠΈΠ·Π²Π΅Ρ‰Π°Ρ‚Π΅Π»ΡŒ остаСтся Π² настоящСС врСмя Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ эффСктивным срСдством обнаруТСния ΠΏΠΎΠΆΠ°Ρ€Π° Π½Π° Ρ€Π°Π½Π½Π΅ΠΉ стадии Π΅Π³ΠΎ появлСния. ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ Π·Π°Π΄Π°Ρ‡Π΅ΠΉ для Π΄Π°Π½Π½ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ° извСщатСля являСтся ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ Π΅Π³ΠΎ Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΊ Β«Ρ‡Π΅Ρ€Π½Ρ‹ΠΌΒ» Π΄Ρ‹ΠΌΠ°ΠΌ ΠΈ обСспСчСниС устойчивости ΠΊ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡŽ элСктромагнитных ΠΏΠΎΠΌΠ΅Ρ… ΠΈ частиц Π½Π΅ Π΄Ρ‹ΠΌΠΎΠ²ΠΎΠ³ΠΎ происхоТдСния. ЦСлью настоящСй Ρ€Π°Π±ΠΎΡ‚Ρ‹ являлась Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° конструкции ΠΈ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° Ρ€Π°Π±ΠΎΡ‚Ρ‹ Ρ‚ΠΎΡ‡Π΅Ρ‡Π½ΠΎΠ³ΠΎ ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠΆΠ°Ρ€Π½ΠΎΠ³ΠΎ извСщатСля, ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰Π΅Π³ΠΎ Π²Ρ‹ΡΠΎΠΊΡƒΡŽ Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΊ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌ Ρ‚ΠΈΠΏΠ°ΠΌ Π΄Ρ‹ΠΌΠΎΠ², ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΈΡ… обнаруТСния ΠΈ Π²Ρ‹ΡΠΎΠΊΡƒΡŽ ΠΏΠΎΠΌΠ΅Ρ…ΠΎΡƒΡΡ‚ΠΎΠΉΡ‡ΠΈΠ²ΠΎΡΡ‚ΡŒ.РСшСниС поставлСнной Ρ†Π΅Π»ΠΈ осущСствлСно использованиСм ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠΉ оптичСской схСмы Π΄Π²ΡƒΡ…ΠΊΠ°Π½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ устройства обнаруТСния Π΄Ρ‹ΠΌΠ° (ΠΏΠΎ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŽ интСнсивностСй излучСния, рассСянного частицами Π΄Ρ‹ΠΌΠ° ΠΈ ΠΏΡ€ΠΎΡˆΠ΅Π΄ΡˆΠ΅Π³ΠΎ Ρ‡Π΅Ρ€Π΅Π· Π΄Ρ‹ΠΌ).Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° конструкция ΠΈ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ Ρ€Π°Π±ΠΎΡ‚Ρ‹ ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠΆΠ°Ρ€Π½ΠΎΠ³ΠΎ извСщатСля, Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰Π΅Π³ΠΎ Π΄Π²ΡƒΡ…ΠΊΠ°Π½Π°Π»ΡŒΠ½ΠΎΠ΅ Π»Π°Π·Π΅Ρ€Π½ΠΎΠ΅ устройство обнаруТСния Π΄Ρ‹ΠΌΠ° ΠΈ Π΄Π°Ρ‚Ρ‡ΠΈΠΊ ΡƒΠ³Π°Ρ€Π½ΠΎΠ³ΠΎ Π³Π°Π·Π°.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ тСстовых испытаний ΠΈΠ·Π³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½Π½ΠΎΠ³ΠΎ извСщатСля ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΡŽΡ‚ ΠΎ Π΅Π³ΠΎ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½ΠΎΠΉ Π² сравнСнии с ΠΎΠ±Ρ‹Ρ‡Π½Ρ‹ΠΌ ΠΎΠ΄Π½ΠΎΠΊΠ°Π½Π°Π»ΡŒΠ½Ρ‹ΠΌ Ρ‚ΠΎΡ‡Π΅Ρ‡Π½Ρ‹ΠΌ Π΄Ρ‹ΠΌΠΎΠ²Ρ‹ΠΌ ΠΏΠΎΠΆΠ°Ρ€Π½Ρ‹ΠΌ ΠΈΠ·Π²Π΅Ρ‰Π°Ρ‚Π΅Π»Π΅ΠΌ Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΊ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌ Ρ‚ΠΈΠΏΠ°ΠΌ Π΄Ρ‹ΠΌΠΎΠ² ΠΈ скорости обнаруТСния Π²ΠΎΠ·Π³ΠΎΡ€Π°Π½ΠΈΠΉ. ВысокиС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ характСристики извСщатСля ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‚ΡΡ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΊΠ°Π½Π°Π»Π° обнаруТСния Π΄Ρ‹ΠΌΠ° (ΠΏΠΎ измСнСнию интСнсивности проходящСго Ρ‡Π΅Ρ€Π΅Π· Π½Π΅Π³ΠΎ излучСния), созданными условиями бСспрСпятствСнного Π·Π°Ρ…ΠΎΠ΄Π° Π΄Ρ‹ΠΌΠ° Π² Π·ΠΎΠ½Ρƒ контроля ΠΈ эффСктивным Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠΌ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ рСгистрируСмых сигналов.
    • …
    corecore