43 research outputs found

    Boundary effects on the dynamics of chains of coupled oscillators

    Full text link
    We study the dynamics of a chain of coupled particles subjected to a restoring force (Klein-Gordon lattice) in the cases of either periodic or Dirichlet boundary conditions. Precisely, we prove that, when the initial data are of small amplitude and have long wavelength, the main part of the solution is interpolated by a solution of the nonlinear Schr\"odinger equation, which in turn has the property that its Fourier coefficients decay exponentially. The first order correction to the solution has Fourier coefficients that decay exponentially in the periodic case, but only as a power in the Dirichlet case. In particular our result allows one to explain the numerical computations of the paper \cite{BMP07}

    On the validity of mean-field amplitude equations for counterpropagating wavetrains

    Full text link
    We rigorously establish the validity of the equations describing the evolution of one-dimensional long wavelength modulations of counterpropagating wavetrains for a hyperbolic model equation, namely the sine-Gordon equation. We consider both periodic amplitude functions and localized wavepackets. For the localized case, the wavetrains are completely decoupled at leading order, while in the periodic case the amplitude equations take the form of mean-field (nonlocal) Schr\"odinger equations rather than locally coupled partial differential equations. The origin of this weakened coupling is traced to a hidden translation symmetry in the linear problem, which is related to the existence of a characteristic frame traveling at the group velocity of each wavetrain. It is proved that solutions to the amplitude equations dominate the dynamics of the governing equations on asymptotically long time scales. While the details of the discussion are restricted to the class of model equations having a leading cubic nonlinearity, the results strongly indicate that mean-field evolution equations are generic for bimodal disturbances in dispersive systems with \O(1) group velocity.Comment: 16 pages, uuencoded, tar-compressed Postscript fil

    Phase Slips and the Eckhaus Instability

    Full text link
    We consider the Ginzburg-Landau equation, ∂tu=∂x2u+u−u∣u∣2 \partial_t u= \partial_x^2 u + u - u|u|^2 , with complex amplitude u(x,t)u(x,t). We first analyze the phenomenon of phase slips as a consequence of the {\it local} shape of uu. We next prove a {\it global} theorem about evolution from an Eckhaus unstable state, all the way to the limiting stable finite state, for periodic perturbations of Eckhaus unstable periodic initial data. Equipped with these results, we proceed to prove the corresponding phenomena for the fourth order Swift-Hohenberg equation, of which the Ginzburg-Landau equation is the amplitude approximation. This sheds light on how one should deal with local and global aspects of phase slips for this and many other similar systems.Comment: 22 pages, Postscript, A
    corecore