13 research outputs found
On the Number of Zeros of Abelian Integrals: A Constructive Solution of the Infinitesimal Hilbert Sixteenth Problem
We prove that the number of limit cycles generated by a small
non-conservative perturbation of a Hamiltonian polynomial vector field on the
plane, is bounded by a double exponential of the degree of the fields. This
solves the long-standing tangential Hilbert 16th problem. The proof uses only
the fact that Abelian integrals of a given degree are horizontal sections of a
regular flat meromorphic connection (Gauss-Manin connection) with a
quasiunipotent monodromy group.Comment: Final revisio
Geometry of differential equations
This volume contains articles written by V. I. Arnold's colleagues on the occasion of his 60th birthday. The articles are mostly devoted to various aspects of geometry of differential equations and relations to global analysis and Hamiltonian mechanics