419 research outputs found

    Intercalated Rare-Earth Metals under Graphene on SiC

    Get PDF
    Intercalation of rare earth metals (RERE = Eu, Dy, and Gd) is achieved by depositing the RERE metal on graphene that is grown on silicon-carbide (SiC) and by subsequent annealing at high temperatures to promote intercalation. STM images of the films reveal that the graphene layer is defect free and that each of the intercalated metals has a distinct nucleation pattern. Intercalated Eu forms nano-clusters that are situated on the vertices of a Moir{\`e} pattern, while Dy and Gd form randomly distributed nano-clusters. X-ray magnetic circular dichroism (XMCD) measurements of intercalated films reveal the magnetic properties of these RERE's nano-clusters. Furthermore, field dependence and temperature dependence of the magnetic moments extracted from the XMCD show paramagnetic-like behaviors with moments that are generally smaller than those predicted by the Brillouin function. XMCD measurements of RERE-oxides compared with those of the intercalated RERE's under graphene after exposure to air for months indicate that the graphene membranes protect these intercalants against oxidation.Comment: 9 pages, 7 figure

    Intercalated europium metal in epitaxial graphene on SiC

    Get PDF
    X-ray magnetic circular dichroism (XMCD) reveal the magnetic properties of intercalated europium metal under graphene on SiC(0001). Intercalation of Eu nano-clusters (average size 2.5 nm) between graphene and SiC substate are formed by deposition of Eu on epitaxially grown graphene that is subsequently annealed at various temperatures while keeping the integrity of the graphene layer. Using sum-rules analysis of the XMCD of Eu M4,5_{4,5} edges at T=15T = 15 K, our samples show paramagnetic-like behavior with distinct anomaly at T \approx 90 K which may be related to the N{\`e}el transition, TN_N = 91 K, of bulk metal Eu. We find no evidence of ferromagnetism due to EuO or antiferromagnetism due to Eu2_2O3_3 indicating that the graphene layer protects the intercalated metallic Eu against oxidation over months of exposure to atmospheric environment.Comment: 6 pages, 5 figure

    Magnetic Vortex Core Dynamics in a Ferromagnetic Dot

    Full text link
    We report direct imaging by means of x-ray photoemission electron microscopy of the dynamics of magnetic vortices confined in micron-size circular Permalloy dots that are 30 nm thick. The vortex core positions oscillate on a 10-ns timescale in a self-induced magnetostatic potential well after the in-plane magnetic field is turned off. The measured oscillation frequencies as a function of the aspect ratio (thickness/radius) of the dots are in agreement with theoretical calculations presented for the same geometry.Comment: 18 pages including 4 figure

    Induced Ge Spin Polarization at the Fe/Ge Interface

    Full text link
    We report direct experimental evidence showing induced magnetic moments on Ge at the interface in an Fe/Ge system. Details of the x-ray magnetic circular dichroism and resonant magnetic scattering at the Ge L edge demonstrate the presence of spin-polarized {\it s} states at the Fermi level, as well as {\it d} character moments at higher energy, which are both oriented antiparallel to the moment of the Fe layer. Use of the sum rules enables extraction of the L/S ratio, which is zero for the {\it s} part and 0.5\sim0.5 for the {\it d} component. These results are consistent with layer-resolved electronic structure calculations, which estimate the {\it s} and {\it d} components of the Ge moment are anti-parallel to the Fe {\it 3d} moment and have a magnitude of 0.01μB\sim0.01 \mu_B.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Let

    Increased Power for Detection of Parent-of-Origin Effects via the Use of Haplotype Estimation

    Get PDF
    Parent-of-origin (or imprinting) effects relate to the situation in which traits are influenced by the allele inherited from only one parent and the allele from the other parent has little or no effect. Given SNP genotype data from case-parent trios, the parent of origin of each allele in the offspring can often be deduced unambiguously; however, this is not true when all three individuals are heterozygous. Most existing methods for investigating parent-of-origin effects operate on a SNP-by-SNP basis and either perform some sort of averaging over the possible parental transmissions or else discard ambiguous trios. If the correct parent of origin at a SNP could be determined, this would provide extra information and increase the power for detecting the effects of imprinting. We propose making use of the surrounding SNP information, via haplotype estimation, to improve estimation of parent of origin at a test SNP for case-parent trios, case-mother duos, and case-father duos. This extra information is then used in a multinomial modeling approach for estimating parent-of-origin effects at the test SNP. We show through computer simulations that our approach has increased power over previous approaches, particularly when the data consist only of duos. We apply our method to two real datasets and find a decrease in significance of p values in genomic regions previously thought to possibly harbor imprinting effects, thus weakening the evidence that such effects actually exist in these regions, although some regions retain evidence of significant effects

    Layer resolved magnetic domain imaging of epitaxial heterostructures in large applied magnetic fields

    Get PDF
    We use X-ray Excited Luminescence Microscopy to investigate the elemental and layer resolved magnetic reversal in an interlayer exchange coupled (IEC) epitaxial Fe/Cr wedge/Co heterostructure. The transition from strongly coupled parallel Co-Fe reversal for Cr thickness tCr < 0.34 nm to weakly coupled layer independent reversal for tCr > 1.5 nm is punctuated at 0.34 < tCr < 1.5 nm by a combination of IEC guided domain wall motion and stationary zig zag domain walls. Domain walls nucleated at switching field minima are guided by IEC spatial gradients and collapse at switching field maxima.RM acknowledges funding from the European Community under the Seventh Framework Program Contract No. 247368: 3SPIN. DL acknowledges funding from the EPSRC. The work performed at the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357.This is the accepted manuscript. The final version is available at http://scitation.aip.org/content/aip/journal/apl/106/7/10.1063/1.4913359
    corecore