557 research outputs found

    The distance to the young cluster NGC 7129 and its age

    Full text link
    The dust cloud TGU H645 P2 and embedded in it young open cluster NGC 7129 are investigated using the results of medium-band photometry of 159 stars in the Vilnius seven-colour system down to V = 18.8 mag. The photometric data were used to classify about 50 percent of the measured stars in spectral and luminosity classes. The extinction A_V vs. distance diagram for the 20x20 arcmin area is plotted for 155 stars with two-dimensional classification from the present and the previous catalogues. The extinction values found range between 0.6 and 3.4 mag. However, some red giants, located in the direction of the dense parts of the cloud, exhibit the infrared extinction equivalent up to A_V = 13 mag. The distance to the cloud (and the cluster) is found to be 1.15 kpc (the true distance modulus 10.30 mag). For determining the age of NGC 7129, a luminosity vs. temperature diagram for six cluster members of spectral classes B3 to A1 was compared with the Pisa pre-main-sequence evolution tracks and the Palla birthlines. The cluster can be as old as about 3 Myr, but star forming continues till now as witnessed by the presence in the cloud of many younger pre-main-sequence objects identified with photometry from 2MASS, Spitzer and WISE infrared surveys.Comment: 8 pages, 6 fugures, full Table 1 online. Accepted for publication in MNRAS on 2013 November 3

    Optical Bandgap Formation in AlInGaN Alloys

    Get PDF
    We report on the spectral dynamics of the reflectivity, site-selectively excited photoluminescence,photoluminescence excitation, and time-resolved luminescence in quaternary AlInGaN epitaxial layers grown on GaN templates. The incorporation of a few percents of In into AlGaN causes significant smoothening of the band-bottom potential profile in AlInGaN layers owing to improved crystal quality. An abrupt optical bandgap indicates that a nearly lattice-matched AlInGaN/GaN heterostructure with large energy band offsets can be grown for high-efficiency light-emitting devices

    Blue and Deep‐Blue‐Emitting Organic Lasers with Top‐Layer Distributed Feedback Resonators

    Get PDF
    All‐solution processed surface‐emitting organic distributed feedback lasers are attractive devices for low‐cost applications. Here, lasers emitting in the spectral region between 375 and 475 nm, in which both active material and resonator (1D relief gratings) are based on solution‐processable polymer films, are reported. Ten different organic compounds dispersed in polystyrene are used as active layers of the prepared devices. They include various carbon‐bridged oligo(p‐phenylenevinylene) (COPVn, with n = 1,2) derivatives and two terfluorene compounds. The synthesis and complete optical and amplified spontaneous emission properties of one of the COPV1 compounds, COPV1(Me)‐t‐Bu, designed for deep‐blue emission, are also included. The feasibility of the resonator fabrication, performed by holographic lithography with a dichromated gelatine photoresist over the active film, is successfully demonstrated for all devices. Remarkably, no resolution limitations are found even for the lowest grating period (235 nm) required for the fabrication of the laser based on COPV1(Me)‐t‐Bu. It is also demonstrated that the rectangular grating profile with duty cycle 0.75:0.25 (hill:valley) is very convenient to optimize the resonator efficacy.The Spanish team acknowledges support from the Spanish Government (MINECO) and the European Community (FEDER) through Grant No. MAT2015-66586-R. H.T. and E.N. thank the financial support from MEXT (JP19H05716 for H.T. and JP19H0549 for E.N.)

    PI3Kδ as a Novel Therapeutic Target in Pathological Angiogenesis

    Get PDF
    Diabetic retinopathy is the most common microvascular complication of diabetes, characterized by the formation of fibrovascular membranes that consist of a variety of cells including vascular endothelial cells (ECs). New therapeutic approaches for this diabetic complication are urgently needed. Here, we report that in cultured human retinal microvascular (HRECs) high glucose induced expression of p110, which was also expressed in ECs of fibrovascular membranes from diabetic patients. This catalytic subunit of a receptor regulated PI3K isoform is known to be highly-enriched in leukocytes. Using genetic and pharmacological approaches, we show that p110 activity in cultured ECs controls Akt activation, cell proliferation, migration, and tube formation induced by vascular endothelial growth factor, basic fibroblast growth factor, and epidermal growth factor. Using a mouse model of oxygen-induced retinopathy, p110 inactivation was found to attenuate pathological retinal angiogenesis. p110 inhibitors have been approved for use in human B-cell malignancies. Our data suggest that antagonizing p110 constitutes a previously-unappreciated therapeutic opportunity for diabetic retinopathy
    corecore