22 research outputs found

    Towards a Medically Approved Technology for Large-Scale Stem Cell Banks: Tools and Method

    No full text
    The importance, of the development of stem cell cryobanking has increased recently with an augmentation of stem cell research and its therapeutic applications. The development of therapies is, among other things, limited by high sensitivity of stem cells to freezingthawing procedures. Thus, new approaches are needed for preservation and related evaluation methods, as well as new technologies for long term storage of large numbers of stem cells. Here we present selected recent improvements of stem cell cryopreservation, e.g. for freezing of adherent human embryonic stem cells using gel-like matrices. We report the application and performance of novel microsystem-based cryosubstrates and devices and describe new evaluation methods and the results of a thermal stress cycle study.В настоящее время возросла важность развития криобанков стволовых клеток в связи с их расширенным изучением и терапевтическим применением. Однако, наряду с другими факторами, вышеуказанная терапия ограничена высокой чувствительностью стволовых клеток к процедурам замораживания-оттаивания. Необходимы как новые подходы к криоконсервированию и связанным с ним методам оценки, так и новые технологии для долгосрочного хранения большого количества стволовых клеток. В настоящей работе мы представляем некоторые улучшенные методы криоконсервирования стволовых клеток, например замораживание эмбриональных стволовых клеток человека с использованием гелеобразного матрикса. Мы представляем результаты применения разработанных на базе микросистемной техники новых криосубстратов и устройств, а также описываем новые методы оценки и результаты изучения циклов температурного стресса.Наразі зросла важливість розвитку кріобанків стовбурових клітин у зв’язку з їх розширеним вивченням і терапевтичним застосуванням. Але водночас з іншими факторами вищезгадана терапія обмежена високою чутливістю стовбурових клітин до процедур заморожування-відтавання. Необхідні як нові підходи до кріоконсервування та повязаних з ним методам оцінки, так і нові технології для довгострокового зберігання великої кількості стовбурових клітин. В цій роботі ми представляємо деякі покращені методи кріоконсервування стовбурових клітин, наприклад заморожування ембріональних стовбурових клітин людини з використанням гелеподібного матриксу. Ми представляємо результати застосування розроблених на базі мікросистемної техніки нових кріосубстратів та приладів, а також описуємо нові методи оцінки і результати вивчення циклів температурного стресу

    Safety analysis and results of a borosilicate glass cartridge for no-touch graft loading and injection in Descemet membrane endothelial keratoplasty

    No full text
    PurposeThe aim of this study was to investigate the clinical outcome after standardized DMEK using a glass injector.MethodsA total of 254 patients undergoing DMEK surgery using a disposable DMEK borosilicate glass cartridge system were included in this retrospective study. The mean follow-up time was 13.2 months (SD8.1, range 6-36 months). The used glass cartridge system has an aperture diameter of 1.6 mm and a posterior loading orifice of 4.29 mm. Scanning electron microscopy (SEM) was used for estimation of the surface relief of the glass cartridge and comparison with a standard plastic injector cartridge.ResultsMean endothelial cell count of donor grafts was 2465 cells/mm(2) (SD +/- 199). After 6 weeks of DMEK endothelial cell count decreased by -28.6% to 1759 cells/mm(2) (SD +/- 435) (Wilcoxon p=0.001) and remained stable at the final follow-up at 1735 cells/mm(2) (SD +/- 442) (Wilcoxon p=0.89). SEM showed smoother surface of the glass cartridge in comparison with a plastic cartridge.Conclusionp id=ParThis study showed that this simple and effective DMEK cartridge seems to be a safe and viable device for minimized graft manipulation during DMEK surgery

    Zellkulturträger für eine In-vitro-Permeabilitaetsuntersuchung an einer Zellschicht sowie zugehörige Verwendung

    No full text
    DE 102007003585 A1 UPAB: 20081002 NOVELTY - The cell culture carrier (2) has two compartments, and a permeable membrane between the both compartments for the supporting the cellular layer (8) to be examined. A structurally integrated measuring electrode system (9,10) is also provided for the measurement of the electrical conductance of the cellular layer, to be examined onto the permeable membrane. The former compartment is molded cup-shaped. An impermeable side wall and the permeable membrane have bottom. Former compartment is inserted into the later compartment. USE - Cell cultural carrier for an in-vitro-permeability assay at a cellular layer, for measurement of the permeability of the cellular layer for a certain active substance, and measurement of the electrical conductance of the cellular layer before and/or after the measurement of the permeability (all claimed). ADVANTAGE - The cell culture carrier ensures integrity of the cellular layer, has improved quality, and is not damage by the electrode arrangement

    Cryopreservation in micro-volumes: Impact upon caco-2 colon adenocarcinoma cell proliferation and differentiation

    No full text
    Recent advances in cell-based therapies require new approaches for cell cryopreservation, capable of dealing with large number of samples and providing specific conditions for each cell type. Reduction of sample volume from the commonly used 1 ml, to 25 mu L, in 30-well micro-cryosubstrates improves cryopreservation by allowing automation, data handling and access to individual wells without thawing the whole cryosubstrate. This system was evaluated for the storage of Caco-2 colon adenocarcinoma cells, which differentiate spontaneously after long-term culture. The impact of the cryosample small volume upon post-thawing membrane integrity of the cells and their capacity to proliferate and differentiate was studied. Two different cryoprotectants commonly employed, dimethyl sulfoxide (Me2SO) and glycerol, were evaluated as well as the possibility of decreasing their concentration from the 10% concentration, usually used, down to 3% (v/v). The process automation by pipette robotic addition of the cryoprotectant to the micro-cryosubstrates was also evaluated. The micro-cryosubstrates have proven to be at least as efficient as typical I mL cryovials for cryopreservation of Caco-2 cells using either Me2SO or glycerol. Compared to the manual process, the automatic addition of glycerol to the inicro-cryosubstrates allowed higher cell viabilities after thawing while with Me2SO no significant changes were observed. Me2SO has shown to be more effective than glycerol in maintaining high post-thaw cell membrane integrity, either in micro-cryosubstrates or cryovials, for any of the concentrations tested. The ability of Me2SO in maintaining high cell membrane integrity post-thawing was confirmed by long-term (up to 22 days) proliferation and differentiation studies performed with cells cultured immediately after thawing

    Effect of gold nanoparticles on adipogenic differentiation of human mesenchymal stem cells

    No full text
    Gold nanoparticles are very attractive for biomedical products. However, there is a serious lack of information concerning the biological activity of nanosized gold in human tissue cells. An influence of nanoparticles on stem cells might lead to unforeseen consequences to organ and tissue functions as long as all cells arising from the initial stem cell might be subsequently damaged. Therefore the effect of negatively charged gold nanoparticles (9 and 95 nm), which are certified as reference material for preclinical biomedical research, on the adipogenic differentiation of human mesenchymal stem cells (hMSCs) is investigated here. Bone marrow hMSCs are chosen as differentiation model since bone marrow hMSCs are well characterized and their differentiation into the adipogenic lineage shows clear and easily detectable differentiation. In this study effects of gold nanoparticles on adipogenic differentiation are analyzed regarding fat storage and mitochondrial activity aft er different exposure times (4-21 days). Using time lapse microscopy the differentiation progress under chronically gold nanoparticle treatment is continuously investigated. In this preliminary study, chronically treatment of adipogenic differentiating hMSCs with gold nanoparticles resulted in a reduced number and size of lipid vacuoles and reduced mitochondrial activity depending on the applied concentration and the surface charge of the particles

    Effective surface-based cryopreservation of human embryonic stem cells by vitrification

    No full text
    Human embryonic stem cells (hESCs) are candidates for many applications in the areas of regenerative medicine, tissue engineering, basic scientific research as well as pharmacology and toxicology. However, use of hESCs is limited by their sensitivity to freezing and thawing procedures. Hence, this emerging science needs new, reliable preservation methods for the long-term storage of large quantities of functional hESCs remaining pluripotent after post-thawing and culturing. Here, we present a highly efficient, surface based vitrification method for the cryopreservation of large numbers of adherent hESC colonies, using modified cell culture substrates. This technique results in much better post-thaw survival rate compared to cryopreservation in suspension and allows a quick and precise handling and storage of the cells, indicating low differentiation rates. (C) 2011 Elsevier Inc. All rights reserved

    A biophysical approach to the optimisation of dendritic-tumour cell electrofusion

    No full text
    Electrofusion of tumour and dendritic cells (DCs) is a promising approach for production of DC-based anti-tumour vaccines. Although human DCs are well characterised immunologically, little is known about their biophysical properties, including dielectric and osmotic parameters, both of which are essential for the development of efficient electrofusion protocols. In the present study, human DCs from the peripheral blood along with a tumour cell line used as a model fusion partner were examined by means of time-resolved cell volumetry and electrorotation. Based on the biophysical cell data, the electrofusion protocol could be rapidly optimised with respect to the sugar composition of the fusion medium, duration of hypotonic treatment, frequency range for stable cell alignment, and field strengths of breakdown pulses triggering membrane fusion. The hypotonic electrofusion consistently gave a tumour-DC hybrid rate of up to 19%, as determined by counting dually labelled fluorescent hybrids in a microscope. This fusion rate is nearly twice as high as that usually reported in the literature for isotonic media. The experimental findings and biophysical approach presented here are generally useful for the development of efficient electrofusion protocols, especially for rare and valuable human cells

    Entrapment of embryonic stem cells-derived cardiomyocytes in macroporous biodegradable microspheres: Preparation and characterization

    No full text
    Embryonic Stem (ES) cells-derived cardiomyocytes can possibly be applied for cell therapy of diseases such as heart failure. Biodegradable scaffolds will significantly improve the expansion of sufficient functional ES cell-derived cardiomyocytes and may also increase the survival rate of cardiomyocytes after their transplantation. In the present study, we cultivated cardiomyocytes isolated from a transgenic a-myosin heavy chain (alpha-MHC) ES cell lineage expressing both puromycin resistance and enhanced green fluorescent protein (EGFP) under the control of the alpha-MHC promoter in macroporous gelatine microspheres using small-scale bioreactors and proved that cardiomyocytes function after their cultivation in micropsperes. The average number of cultivated cells per microsphere was optimised once the most suitable agitation conditions and the optimal timeframe of cultivation were identified. Our study shows that 72% of CultiSpher-S beads were colonised by cardiomyocytes under optimal conditions. Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) showed that colonization of the beads was not limited to the surface, but that cells also invaded the inner surfaces of the microspheres. Electrophysiological experiments demonstrated that the action potentials (APs) of alpha MHC+ cardiomyocytes entrapped in microspheres were identical to action potentials of control cells. This attractive approach for cultivation and expansion of functional cardiomyocytes in biodegradable macroporous may offer a perspective for higher transplantation efficiencies of ES cell-derived cardiomyocytes
    corecore