809 research outputs found

    0ν2β0\nu2\beta Nuclear Matrix Elements and Neutrino Magnetic Moments

    Full text link
    We compare different methods of obtaining the neutrinoless double beta decay nuclear matrix elements (NME). On the example of 76Ge we use the NME to calculate the Majorana neutrino transition magnetic moments, generated through particle-sparticle R-parity violating loop diagrams whithin the minimal supersymmetric standard model.Comment: I've decided to move the collection of my papers to arXiv for easier access. Proceedings of the Nuclear Physics Workshop in Kazimierz Dolny, Poland, 200

    Neutralino Induced Majorana Neutrino Transition Magnetic Moments

    Full text link
    We calculate the effect of neutrino-neutralino mixing on the neutrino magnetic moment and compare it with the contribution of pure particle-sparticle loop. We have found that the dominated mechanism is still the bare loop, and that the bilinear insertions on the external neutrino lines contribute at least one order of magnitude weaker.Comment: I've decided to move the collection of my papers to arXiv for easier access. Proceedings of the Nuclear Physics Workshop in Kazimierz Dolny, Poland, 200

    Neutrinoless double beta decay constrained by the existence of large extra dimensions

    Full text link
    We present the possible influence on the half-life of neutrinoless double beta decay coming from the existence of nn extra spatial dimensions. The half-life in question depends on the mass of the electron neutrino. We base our analysis on the Majorana neutrino mass mechanism in Arkani-Hamed--Dimopoulos--Dvali model.Comment: I decided to move the collection of my papers to arXiv for easier access. Proceedings of the Nuclear Physics Workshop in Kazimierz Dolny, Poland, 200

    Constraining Bilinear R-Parity Violation from Neutrino Masses

    Full text link
    We confront the R-parity violating MSSM model with the neutrino oscillation data. Investigating the 1-loop particle-sparticle diagrams with additional bilinear insertions on the external neutrino lines we construct the relevant contributions to the neutrino mass matrix. A comparison of the so-obtained matrices with the experimental ones assuming normal or inverted hierarchy and taking into account possible CP violating phases, allows to set constraints on the values of the bilinear coupling constants. A similar calculation is presented with the input from the Heidelberg-Moscow neutrinoless double beta decay experiment. We base our analysis on the renormalization group evolution of the MSSM parameters which are unified at the GUT scale. Using the obtained bounds we calculate the contributions to the Majorana neutrino transition magnetic moments.Comment: I've decided to move the collection of my papers to arXiv for easier acces

    Fermion-boson loops with bilinear R-parity violation leading to Majorana neutrino mass and magnetic moments

    Full text link
    We present analytic expressions corresponding to a set of one loop Feynman diagrams, built within R-parity violating (RpV) minimal supersymmetric standard model (MSSM). Diagrams involve both bilinear and trilinear RpV couplings and represent Majorana neutrino masses and magnetic moments.Comment: I've decided to move the collection of my papers to arXiv for easier access. Proceedings of the Nuclear Physics Workshop in Kazimierz Dolny, Poland, 200

    Neutrino mass in GUT constrained supersymmetry with R-parity violation in light of neutrino oscillations

    Full text link
    The neutrino masses are generated in grand unified theory (GUT) constrained supersymmetric model with R-parity violation. The neutrinos acquire masses via tree-level neutrino-neutralino mixing as well as via one-loop radiative corrections. The theoretical mass matrix is compared with the phenomenological one, which is reconstructed by using neutrino oscillation and neutrinoless double beta decay data. This procedure allows to obtain significantly stronger constraints on R-parity breaking parameters than those existing in the literature. The implication of normal and inverted neutrino mass hierarchy on the sneutrino expectation values, lepton-Higgs bilinear and trilinear R-parity breaking couplings is also discussed

    Final state interactions in B+- to K+ K- K+- decays

    Get PDF
    Charged B decays to three charged kaons are analysed in the framework of the QCD factorization approach. The strong final state K+K-interactions are described using the kaon scalar and vector form factors. The scalar non-strange and strange form factors at low K+K- effective masses are constrained by chiral perturbation theory and satisfy the two-body unitarity conditions. The latter stem from the properties of the meson-meson amplitudes which describe all possible S-wave transitions between three coupled channels consisting of two kaons, two pions and four pions. The vector form factors are fitted to the data on the electromagnetic kaon interactions. The model results are compared with the Belle and BaBar data. Away from phi(1020) resonance, in the S-wave dominated K+K- mass spectra, a possibility for a large CP asymmetry is identified.Comment: 7 pages, 4 figures, modified version published in Physics Letters
    corecore