8 research outputs found

    Analytical solution of generalized Burton--Cabrera--Frank equations for growth and post--growth equilibration on vicinal surfaces

    Full text link
    We investigate growth on vicinal surfaces by molecular beam epitaxy making use of a generalized Burton--Cabrera--Frank model. Our primary aim is to propose and implement a novel analytical program based on a perturbative solution of the non--linear equations describing the coupled adatom and dimer kinetics. These equations are considered as originating from a fully microscopic description that allows the step boundary conditions to be directly formulated in terms of the sticking coefficients at each step. As an example, we study the importance of diffusion barriers for adatoms hopping down descending steps (Schwoebel effect) during growth and post-growth equilibration of the surface.Comment: 16 pages, REVTeX 3.0, IC-DDV-94-00

    Nonlinear anomalous diffusion equation and fractal dimension: Exact generalized gaussian solution

    Full text link
    In this work we incorporate, in a unified way, two anomalous behaviors, the power law and stretched exponential ones, by considering the radial dependence of the NN-dimensional nonlinear diffusion equation ρ/t=(Kρν)(μFρ)αρ,\partial\rho /\partial{t}={\bf \nabla} \cdot (K{\bf \nabla} \rho^{\nu})-{\bf \nabla}\cdot(\mu{\bf F} \rho)-\alpha \rho , where K=DrθK=D r^{-\theta}, ν\nu, θ\theta, μ\mu and DD are real parameters and α\alpha is a time-dependent source. This equation unifies the O'Shaugnessy-Procaccia anomalous diffusion equation on fractals (ν=1\nu =1) and the spherical anomalous diffusion for porous media (θ=0\theta=0). An exact spherical symmetric solution of this nonlinear Fokker-Planck equation is obtained, leading to a large class of anomalous behaviors. Stationary solutions for this Fokker-Planck-like equation are also discussed by introducing an effective potential.Comment: Latex, 6 pages. To appear in Phys. Rev.

    Superpositions of Probability Distributions

    Full text link
    Probability distributions which can be obtained from superpositions of Gaussian distributions of different variances v = \sigma ^2 play a favored role in quantum theory and financial markets. Such superpositions need not necessarily obey the Chapman-Kolmogorov semigroup relation for Markovian processes because they may introduce memory effects. We derive the general form of the smearing distributions in v which do not destroy the semigroup property. The smearing technique has two immediate applications. It permits simplifying the system of Kramers-Moyal equations for smeared and unsmeared conditional probabilities, and can be conveniently implemented in the path integral calculus. In many cases, the superposition of path integrals can be evaluated much easier than the initial path integral. Three simple examples are presented, and it is shown how the technique is extended to quantum mechanics.Comment: 23 pages, RevTeX, minor changes, accepted to Phys. Rev.

    A Simple Model for Anisotropic Step Growth

    Get PDF
    We consider a simple model for the growth of isolated steps on a vicinal crystal surface. It incorporates diffusion and drift of adatoms on the terrace, and strong step and kink edge barriers. Using a combination of analytic methods and Monte Carlo simulations, we study the morphology of growing steps in detail. In particular, under typical Molecular Beam Epitaxy conditions the step morphology is linearly unstable in the model and develops fingers separated by deep cracks. The vertical roughness of the step grows linearly in time, while horizontally the fingers coarsen proportional to t0.33t^{0.33}. We develop scaling arguments to study the saturation of the ledge morphology for a finite width and length of the terrace.Comment: 20 pages, 12 figures; [email protected]
    corecore