17,137 research outputs found

    Ferromagnetic ground state of the robust charge-ordered manganite Pr(0.5)Ca(0.5MnO(3)obtained by minimal Al-substitution

    Get PDF
    We show that minimal disturbance to the robust charge ordered Pr(0.5)Ca(0.5)MnO(3) by 2.5% Al substitution on Mn-site drives the system towards ferromagnetic ground state. The history-dependent coexisting phases observed are explained as an outcome of a hindered first order transition with glass like arrest of kinetics resulting in irreversibility. Consistent with a simple phase diagram having ferromagnetic ground state, it is experimentally shown that these coexisting phases are far from the equilibrium.Comment: This version is Accepted in Physical Review

    Coexisting tuneable fractions of glassy and equilibrium long-range-order phases in manganites

    Get PDF
    Antiferromagnetic-insulating(AF-I) and the ferromagnetic-metallic(FM-M) phases coexist in various half-doped manganites over a range of temperature and magnetic field, and this is often believed to be an essential ingredient to their colossal magnetoresistence. We present magnetization and resistivity measurements on Pr(0.5)Ca(0.5)Mn(0.975)Al(0.025)O(3) and Pr(0.5)Sr(0.5)MnO(3) showing that the fraction of the two coexisting phases at low-temperature in any specified measuring field H, can be continuously controlled by following designed protocols traversing field-temperature space; for both materials the FM-M fraction rises under similar cooling paths. Constant-field temperature variations however show that the former sample undergoes a 1st order transition from AF-I to FM-M with decreasing T, while the latter undergoes the reverse transition. We suggest that the observed path-dependent phase-separated states result from the low-T equilibrium phase coexisting with supercooled glass-like high temperature phase, where the low-T equilibrium phases are actually homogeneous FM-M and AF-I phases respectively for the two materials

    Relativistic Coupled-Cluster Theory of Atomic Parity Nonconservation: Application to 137^{137}Ba+^+

    Full text link
    We report the result of our {\it ab initio} calculation of the 6s2S1/25d2D3/26s ^2S_{1/2} \to 5d ^2D_{3/2} parity nonconserving electric dipole transition amplitude in 137Ba+^{137}\text{Ba}^+ based on relativistic coupled-cluster theory. Considering single, double and partial triple excitations, we have achieved an accuracy of less than one percent. If the accuracy of our calculation can be matched by the proposed parity nonconservation experiment in Ba+^+ for the above transition,then the combination of the two results would provide an independent non accelerator test of the Standard Model of particle physics.Comment: 4 pages, 1 figure, Submitted to PR
    corecore