160 research outputs found

    Principal manifolds and graphs in practice: from molecular biology to dynamical systems

    Full text link
    We present several applications of non-linear data modeling, using principal manifolds and principal graphs constructed using the metaphor of elasticity (elastic principal graph approach). These approaches are generalizations of the Kohonen's self-organizing maps, a class of artificial neural networks. On several examples we show advantages of using non-linear objects for data approximation in comparison to the linear ones. We propose four numerical criteria for comparing linear and non-linear mappings of datasets into the spaces of lower dimension. The examples are taken from comparative political science, from analysis of high-throughput data in molecular biology, from analysis of dynamical systems.Comment: 12 pages, 9 figure

    Entropy Balance and Dispersive Oscillations in Lattice Boltzmann Models

    Full text link
    We conduct an investigation into the dispersive post-shock oscillations in the entropic lattice-Boltzmann method (ELBM). To this end we use a root finding algorithm to implement the ELBM which displays fast cubic convergence and guaranties the proper sign of dissipation. The resulting simulation on the one-dimensional shock tube shows no benefit in terms of regularization from using the ELBM over the standard LBGK method. We also conduct an experiment investigating of the LBGK method using median filtering at a single point per time step. Here we observe that significant regularization can be achieved.Comment: 18 pages, 4 figures; 13/07/2009 Matlab code added to appendi

    PCA Beyond The Concept of Manifolds: Principal Trees, Metro Maps, and Elastic Cubic Complexes

    Full text link
    Multidimensional data distributions can have complex topologies and variable local dimensions. To approximate complex data, we propose a new type of low-dimensional ``principal object'': a principal cubic complex. This complex is a generalization of linear and non-linear principal manifolds and includes them as a particular case. To construct such an object, we combine a method of topological grammars with the minimization of an elastic energy defined for its embedment into multidimensional data space. The whole complex is presented as a system of nodes and springs and as a product of one-dimensional continua (represented by graphs), and the grammars describe how these continua transform during the process of optimal complex construction. The simplest case of a topological grammar (``add a node'', ``bisect an edge'') is equivalent to the construction of ``principal trees'', an object useful in many practical applications. We demonstrate how it can be applied to the analysis of bacterial genomes and for visualization of cDNA microarray data using the ``metro map'' representation. The preprint is supplemented by animation: ``How the topological grammar constructs branching principal components (AnimatedBranchingPCA.gif)''.Comment: 19 pages, 8 figure

    Elastic Maps and Nets for Approximating Principal Manifolds and Their Application to Microarray Data Visualization

    Full text link
    Principal manifolds are defined as lines or surfaces passing through ``the middle'' of data distribution. Linear principal manifolds (Principal Components Analysis) are routinely used for dimension reduction, noise filtering and data visualization. Recently, methods for constructing non-linear principal manifolds were proposed, including our elastic maps approach which is based on a physical analogy with elastic membranes. We have developed a general geometric framework for constructing ``principal objects'' of various dimensions and topologies with the simplest quadratic form of the smoothness penalty which allows very effective parallel implementations. Our approach is implemented in three programming languages (C++, Java and Delphi) with two graphical user interfaces (VidaExpert http://bioinfo.curie.fr/projects/vidaexpert and ViMiDa http://bioinfo-out.curie.fr/projects/vimida applications). In this paper we overview the method of elastic maps and present in detail one of its major applications: the visualization of microarray data in bioinformatics. We show that the method of elastic maps outperforms linear PCA in terms of data approximation, representation of between-point distance structure, preservation of local point neighborhood and representing point classes in low-dimensional spaces.Comment: 35 pages 10 figure

    Thermodynamic Tree: The Space of Admissible Paths

    Full text link
    Is a spontaneous transition from a state x to a state y allowed by thermodynamics? Such a question arises often in chemical thermodynamics and kinetics. We ask the more formal question: is there a continuous path between these states, along which the conservation laws hold, the concentrations remain non-negative and the relevant thermodynamic potential G (Gibbs energy, for example) monotonically decreases? The obvious necessary condition, G(x)\geq G(y), is not sufficient, and we construct the necessary and sufficient conditions. For example, it is impossible to overstep the equilibrium in 1-dimensional (1D) systems (with n components and n-1 conservation laws). The system cannot come from a state x to a state y if they are on the opposite sides of the equilibrium even if G(x) > G(y). We find the general multidimensional analogue of this 1D rule and constructively solve the problem of the thermodynamically admissible transitions. We study dynamical systems, which are given in a positively invariant convex polyhedron D and have a convex Lyapunov function G. An admissible path is a continuous curve along which GG does not increase. For x,y from D, x\geq y (x precedes y) if there exists an admissible path from x to y and x \sim y if x\geq y and y\geq x. The tree of G in D is a quotient space D/~. We provide an algorithm for the construction of this tree. In this algorithm, the restriction of G onto the 1-skeleton of DD (the union of edges) is used. The problem of existence of admissible paths between states is solved constructively. The regions attainable by the admissible paths are described.Comment: Extended version, 31 page, 9 figures, 69 cited references, many minor correction

    Computational diagnosis and risk evaluation for canine lymphoma

    Full text link
    The canine lymphoma blood test detects the levels of two biomarkers, the acute phase proteins (C-Reactive Protein and Haptoglobin). This test can be used for diagnostics, for screening, and for remission monitoring as well. We analyze clinical data, test various machine learning methods and select the best approach to these problems. Three family of methods, decision trees, kNN (including advanced and adaptive kNN) and probability density evaluation with radial basis functions, are used for classification and risk estimation. Several pre-processing approaches were implemented and compared. The best of them are used to create the diagnostic system. For the differential diagnosis the best solution gives the sensitivity and specificity of 83.5% and 77%, respectively (using three input features, CRP, Haptoglobin and standard clinical symptom). For the screening task, the decision tree method provides the best result, with sensitivity and specificity of 81.4% and >99%, respectively (using the same input features). If the clinical symptoms (Lymphadenopathy) are considered as unknown then a decision tree with CRP and Hapt only provides sensitivity 69% and specificity 83.5%. The lymphoma risk evaluation problem is formulated and solved. The best models are selected as the system for computational lymphoma diagnosis and evaluation the risk of lymphoma as well. These methods are implemented into a special web-accessed software and are applied to problem of monitoring dogs with lymphoma after treatment. It detects recurrence of lymphoma up to two months prior to the appearance of clinical signs. The risk map visualisation provides a friendly tool for explanatory data analysis.Comment: 24 pages, 86 references in the bibliography, Significantly extended version with review of lymphoma biomarkers and data mining methods (Three new sections are added: 1.1. Biomarkers for canine lymphoma, 1.2. Acute phase proteins as lymphoma biomarkers and 3.1. Data mining methods for biomarker cancer diagnosis. Flowcharts of data analysis are included as supplementary material (20 pages

    Decay and coherence of two-photon excited yellow ortho-excitons in Cu2O

    Get PDF
    Photoluminescence excitation spectroscopy has revealed a novel, highly efficient two-photon excitation method to produce a cold, uniformly distributed high density excitonic gas in bulk cuprous oxide. A study of the time evolution of the density, temperature and chemical potential of the exciton gas shows that the so called quantum saturation effect that prevents Bose-Einstein condensation of the ortho-exciton gas originates from an unfavorable ratio between the cooling and recombination rates. Oscillations observed in the temporal decay of the ortho-excitonic luminescence intensity are discussed in terms of polaritonic beating. We present the semiclassical description of polaritonic oscillations in linear and non-linear optical processes.Comment: 14 pages, 12 figure

    Raman and Infrared-Active Phonons in Hexagonal HoMnO3_3 Single Crystals: Magnetic Ordering Effects

    Full text link
    Polarized Raman scattering and infrared reflection spectra of hexagonal HoMnO3_3 single crystals in the temperature range 10-300 K are reported. Group-theoretical analysis is performed and scattering selection rules for the second order scattering processes are presented. Based on the results of lattice dynamics calculations, performed within the shell model, the observed lines in the spectra are assigned to definite lattice vibrations. The magnetic ordering of Mn ions, which occurs below TN_N=76 K, is shown to effect both Raman- and infrared-active phonons, which modulate Mn-O-Mn bonds and, consequently, Mn exchange interaction.Comment: 8 pages, 6 figure
    • …
    corecore