471 research outputs found
Different mechanics of snap-trapping in the two closely related carnivorous plants Dionaea muscipula and Aldrovanda vesiculosa
The carnivorous aquatic Waterwheel Plant (Aldrovanda vesiculosa L.) and the
closely related terrestrial Venus Flytrap (Dionaea muscipula SOL. EX J. ELLIS)
both feature elaborate snap-traps, which shut after reception of an external
mechanical stimulus by prey animals. Traditionally, Aldrovanda is considered as
a miniature, aquatic Dionaea, an assumption which was already established by
Charles Darwin. However, videos of snapping traps from both species suggest
completely different closure mechanisms. Indeed, the well-described snapping
mechanism in Dionaea comprises abrupt curvature inversion of the two trap
lobes, while the closing movement in Aldrovanda involves deformation of the
trap midrib but not of the lobes, which do not change curvature. In this paper,
we present the first detailed mechanical models for these plants, which are
based on the theory of thin solid membranes and explain this difference by
showing that the fast snapping of Aldrovanda is due to kinematic amplification
of the bending deformation of the midrib, while that of Dionaea unambiguously
relies on the buckling instability that affects the two lobes.Comment: accepted in Physical Review
Description of non-specific DNA-protein interaction and facilitated diffusion with a dynamical model
We propose a dynamical model for non-specific DNA-protein interaction, which
is based on the 'bead-spring' model previously developed by other groups, and
investigate its properties using Brownian Dynamics simulations. We show that
the model successfully reproduces some of the observed properties of real
systems and predictions of kinetic models. For example, sampling of the DNA
sequence by the protein proceeds via a succession of 3d motion in the solvent,
1d sliding along the sequence, short hops between neighboring sites, and
intersegmental transfers. Moreover, facilitated diffusion takes place in a
certain range of values of the protein effective charge, that is, the
combination of 1d sliding and 3d motion leads to faster DNA sampling than pure
3d motion. At last, the number of base pairs visited during a sliding event is
comparable to the values deduced from single-molecule experiments. We also
point out and discuss some discrepancies between the predictions of this model
and some recent experimental results as well as some hypotheses and predictions
of kinetic models
Anharmonic stacking in supercoiled DNA
Multistep denaturation in a short circular DNA molecule is analyzed by a
mesoscopic Hamiltonian model which accounts for the helicoidal geometry.
Computation of melting profiles by the path integral method suggests that
stacking anharmonicity stabilizes the double helix against thermal disruption
of the hydrogen bonds. Twisting is essential in the model to capture the
importance of nonlinear effects on the thermodynamical properties. In a ladder
model with zero twist, anharmonic stacking scarcely affects the thermodynamics.
Moderately untwisted helices, with respect to the equilibrium conformation,
show an energetic advantage against the overtwisted ones. Accordingly
moderately untwisted helices better sustain local fluctuational openings and
make more unlikely the thermally driven complete strand separation.Comment: In pres
High-resolution Fourier-transform XUV photoabsorption spectroscopy of 14N15N
The first comprehensive high-resolution photoabsorption spectrum of 14N15N
has been recorded using the Fourier-transform spectrometer attached to the
Desirs beamline at the Soleil synchrotron. Observations are made in the extreme
ultraviolet (XUV) and span 100,000-109,000 cm-1 (100-91.7 nm). The observed
absorption lines have been assigned to 25 bands and reduced to a set of
transition energies, f values, and linewidths. This analysis has verified the
predictions of a theoretical model of N2 that simulates its photoabsorption and
photodissociation cross section by solution of an isotopomer independent
formulation of the coupled-channel Schroedinger equation. The mass dependence
of predissociation linewidths and oscillator strengths is clearly evident and
many local perturbations of transition energies, strengths, and widths within
individual rotational series have been observed.Comment: 14 pages, 8 figures, one data archiv
Dynamic cluster-scaling in DNA
It is shown that the nucleotide sequences in DNA molecules have
cluster-scaling properties (discovered for the first time in turbulent
processes: Sreenivasan and Bershadskii, 2006, J. Stat. Phys., 125, 1141-1153.).
These properties are relevant to both types of nucleotide pair-bases
interactions: hydrogen bonds and stacking interactions. It is shown that taking
into account the cluster-scaling properties can help to improve heterogeneous
models of the DNA dynamics. Two human genes: BRCA2 and NRXN1, have been
considered as examples
Hydrogen atom in crossed electric and magnetic fields: Phase space topology and torus quantization via periodic orbits
A hierarchical ordering is demonstrated for the periodic orbits in a strongly
coupled multidimensional Hamiltonian system, namely the hydrogen atom in
crossed electric and magnetic fields. It mirrors the hierarchy of broken
resonant tori and thereby allows one to characterize the periodic orbits by a
set of winding numbers. With this knowledge, we construct the action variables
as functions of the frequency ratios and carry out a semiclassical torus
quantization. The semiclassical energy levels thus obtained agree well with
exact quantum calculations
Renormalisation group determination of the order of the DNA denaturation transition
We report on the nature of the thermal denaturation transition of homogeneous
DNA as determined from a renormalisation group analysis of the
Peyrard-Bishop-Dauxois model. Our approach is based on an analogy with the
phenomenon of critical wetting that goes further than previous qualitative
comparisons, and shows that the transition is continuous for the average
base-pair separation. However, since the range of universal critical behaviour
appears to be very narrow, numerically observed denaturation transitions may
look first-order, as it has been reported in the literature.Comment: 6 pages; no figures; to appear in Europhysics Letter
Complex gastroschisis: a new indication for fetal surgery?
Gastroschisis (GS) is a congenital abdominal wall defect, in which the bowel eviscerates from the abdominal cavity. It is a non-lethal isolated anomaly and its pathogenesis is hypothesized to occur as a result of two hits: primary rupture of the ‘physiological’ umbilical hernia (congenital anomaly) followed by progressive damage of the eviscerated bowel (secondary injury). The second hit is thought to be caused by a combination of mesenteric ischemia from constriction in the abdominal wall defect and prolonged amniotic fluid exposure with resultant inflammatory damage, which eventually leads to bowel dysfunction and complications. GS can be classified as either simple or complex, with the latter being complicated by a combination of intestinal atresia, stenosis, perforation, volvulus and/or necrosis. Complex GS requires multiple neonatal surgeries and is associated with significantly greater postnatal morbidity and mortality than is simple GS. The intrauterine reduction of the eviscerated bowel before irreversible damage occurs and subsequent defect closure may diminish or potentially prevent the bowel damage and other fetal and neonatal complications associated with this condition. Serial prenatal amnioexchange has been studied in cases with GS as a potential intervention but never adopted because of its unproven benefit in terms of survival and bowel and lung function. We believe that recent advances in prenatal diagnosis and fetoscopic surgery justify reconsideration of the antenatal management of complex GS under the rubric of the criteria for fetal surgery established by the International Fetal Medicine and Surgery Society (IFMSS). Herein, we discuss how conditions for fetoscopic repair of complex GS might be favorable according to the IFMSS criteria, including an established natural history, an accurate prenatal diagnosis, absence of fully effective perinatal treatment due to prolonged need for neonatal intensive care, experimental evidence for fetoscopic repair and maternal and fetal safety of fetoscopy in expert fetal centers. Finally, we propose a research agenda that will help overcome barriers to progress and provide a pathway toward clinical implementation. © 2021 International Society of Ultrasound in Obstetrics and Gynecology
- …