81 research outputs found

    Neurotrophin gene augmentation by electrotransfer to improve cochlear implant hearing outcomes

    Get PDF
    This Review outlines the development of DNA-based therapeutics for treatment of hearing loss, and in particular, considers the potential to utilize the properties of recombinant neurotrophins to improve cochlear auditory (spiral ganglion) neuron survival and repair. This potential to reduce spiral ganglion neuron death and indeed re-grow the auditory nerve fibres has been the subject of considerable pre-clinical evaluation over decades with the view of improving the neural interface with cochlear implants. This provides the context for discussion about the development of a novel means of using cochlear implant electrode arrays for gene electrotransfer. Mesenchymal cells which line the cochlear perilymphatic compartment can be selectively transfected with (naked) plasmid DNA using array - based gene electrotransfer, termed ‘close-field electroporation’. This technology is able to drive expression of brain derived neurotrophic factor (BDNF) in the deafened guinea pig model, causing re-growth of the spiral ganglion peripheral neurites towards the mesenchymla cells, and hence into close proximity with cochlear implant electrodes within scala tympani. This was associated with functional enhancement of the cochlear implant neural interface (lower neural recruitment thresholds and expanded dynamic range, measured using electrically - evoked auditory brainstem responses). The basis for the efficiency of close-field electroporation arises from the compression of the electric field in proximity to the ganged cochlear implant electrodes. The regions close to the array with highest field strength corresponded closely to the distribution of bioreporter cells (adherent human embryonic kidney (HEK293)) expressing green fluorescent reporter protein (GFP) following gene electrotransfer. The optimization of the gene electrotransfer parameters using this cell-based model correlated closely with in vitro and in vivo cochlear gene delivery outcomes. The migration of the cochlear implant electrode array-based gene electrotransfer platform towards a clinical trial for neurotrophin-based enhancement of cochlear implants is supported by availability of a novel regulatory compliant mini-plasmid DNA backbone (pFAR4; plasmid Free of Antibiotic Resistance v.4) which could be used to package a ‘humanized’ neurotrophin expression cassette. A reporter cassette packaged into pFAR4 produced prominent GFP expression in the guinea pig basal turn perilymphatic scalae. More broadly, close-field gene electrotransfer may lend itself to a spectrum of potential DNA therapeutics applications benefitting from titratable, localised, delivery of naked DNA, for gene augmentation, targeted gene regulation, or gene substitution strategies

    DKC1 is a transcriptional target of GATA1 and drives upregulation of telomerase activity in normal human erythroblasts

    Get PDF
    Telomerase is a ribonucleoprotein complex that maintains the length and integrity of telomeres, and thereby enables cellular proliferation. Understanding the regulation of telomerase in hematopoietic cells is relevant to the pathogenesis of leukemia, in which telomerase is constitutively activated, as well as bone marrow failure syndromes that feature telomerase insufficiency. Past studies showing high levels of telomerase in human erythroblasts and a prevalence of anemia in disorders of telomerase insufficiency provide the rationale for investigating telomerase regulation in erythroid cells. Here it is shown for the first time that the telomerase RNA-binding protein dyskerin (encoded by DKC1) is dramatically upregulated as human hematopoietic stem and progenitor cells commit to the erythroid lineage, driving an increase in telomerase activity in the presence of limiting amounts of TERT mRNA. It is also shown that upregulation of DKC1 was necessary for expansion of glycophorin A+ erythroblasts and sufficient to extend telomeres in erythroleukemia cells. Chromatin immunoprecipitation and reporter assays implicated GATA1-mediated transcriptional regulation of DKC1 in the modulation of telomerase in erythroid lineage cells. Together these results describe a novel mechanism of telomerase regulation in erythroid cells which contrasts with mechanisms centered on transcriptional regulation of TERT that are known to operate in other cell types. This is the first study to reveal a biological context in which telomerase is upregulated by DKC1 and to implicate GATA1 in telomerase regulation. The results from this study are relevant to hematopoietic disorders involving DKC1 mutations, GATA1 deregulation and/or telomerase insufficiency

    Listeria monocytogenes Internalin B Activates Junctional Endocytosis to Accelerate Intestinal Invasion

    Get PDF
    Listeria monocytogenes (Lm) uses InlA to invade the tips of the intestinal villi, a location at which cell extrusion generates a transient defect in epithelial polarity that exposes the receptor for InlA, E-cadherin, on the cell surface. As the dying cell is removed from the epithelium, the surrounding cells reorganize to form a multicellular junction (MCJ) that Lm exploits to find its basolateral receptor and invade. By examining individual infected villi using 3D-confocal imaging, we uncovered a novel role for the second major invasin, InlB, during invasion of the intestine. We infected mice intragastrically with isogenic strains of Lm that express or lack InlB and that have a modified InlA capable of binding murine E-cadherin and found that Lm lacking InlB invade the same number of villi but have decreased numbers of bacteria within each infected villus tip. We studied the mechanism of InlB action at the MCJs of polarized MDCK monolayers and find that InlB does not act as an adhesin, but instead accelerates bacterial internalization after attachment. InlB locally activates its receptor, c-Met, and increases endocytosis of junctional components, including E-cadherin. We show that MCJs are naturally more endocytic than other sites of the apical membrane, that endocytosis and Lm invasion of MCJs depends on functional dynamin, and that c-Met activation by soluble InlB or hepatocyte growth factor (HGF) increases MCJ endocytosis. Also, in vivo, InlB applied through the intestinal lumen increases endocytosis at the villus tips. Our findings demonstrate a two-step mechanism of synergy between Lm's invasins: InlA provides the specificity of Lm adhesion to MCJs at the villus tips and InlB locally activates c-Met to accelerate junctional endocytosis and bacterial invasion of the intestine

    Australian scorpion Hormurus waigiensis venom fractions show broad bioactivity through modulation of bio-impedance and cytosolic calcium

    Get PDF
    Scorpion venoms are a rich source of bioactive molecules, but characterisation of toxin peptides affecting cytosolic Ca2+, central to cell signalling and cell death, is limited. We undertook a functional screening of the venom of the Australian scorpion Hormurus waigiensis to determine the breadth of Ca2+ mobilisation. A human embryonic kidney (HEK293) cell line stably expressing the genetically encoded Ca2+ reporter GCaMP5G and the rabbit type 1 ryanodine receptor (RyR1) was developed as a biosensor. Size-exclusion Fast Protein Liquid Chromatography separated the venom into 53 fractions, constituting 12 chromatographic peaks. Liquid chromatography mass spectroscopy identified 182 distinct molecules with 3 to 63 components per peak. The molecular weights varied from 258 Da—13.6 kDa, with 53% under 1 kDa. The majority of the venom chromatographic peaks (tested as six venom pools) were found to reversibly modulate cell monolayer bioimpedance, detected using the xCELLigence platform (ACEA Biosciences). Confocal Ca2+ imaging showed 9/14 peak samples, with molecules spanning the molecular size range, increased cytosolic Ca2+ mobilization. H. waigiensis venom Ca2+ activity was correlated with changes in bio-impedance, reflecting multi-modal toxin actions on cell physiology across the venom proteome

    Acquired cisplatin resistance in the head-neck cancer cell line Cal27 is associated with decreased DKK1 expression and can partially be reversed by overexpression of DKK1

    No full text
    Head and neck cancers are treated by a combination of surgery, radiotherapy and/or chemotherapy. The clinical success of cisplatin-based chemotherapy, mostly in combination with 5-FU or a taxane, is however limited by multifactorial intrinsic or acquired resistance. So far, known genes involved in cisplatin resistance do not sufficiently allow the prediction of cancer chemosensitivity. Thus, the purpose of this study was to search for further genes involved in cisplatin resistance by differential gene expression analysis of the parental tongue cancer cell line Cal27 and its 10-fold more resistant sub-cell line Cal27cis, which was obtained by treating Cal27 with increasing concentrations of cisplatin. As found by the suppression subtractive hybridization, expression of DKK1, an inhibitor of canonical WNT signaling, was decreased in Cal27cis. Microarray analysis, qPCR and ELISA confirmed the approximately 2-fold difference in expression. Cisplatin treatment and serum starvation increased by 2-fold the secretion of DKK1 in Cal27 and Cal27cis, thus rendering DKK1-levels significantly different in both cell lines under basal and stress conditions. Recombinant overexpression of DKK1 in Cal27 and Cal27cis resulted in clonal cell lines, which were both 2.2- to 3-fold more sensitive toward cisplatin in cell viability (MTT) and in proliferation (BrdU) assays. In conclusion, acquired (10-fold) resistance of Cal27 against cisplatin is associated with decreased DKK1 expression and could partially be reversed by DKK1 overexpression, thus suggesting DKK1 and the WNT signaling pathway as a marker and target for cisplatin chemosensitivity
    corecore