49,672 research outputs found

    Quark and lepton masses from top loops

    Get PDF
    Assuming that the leptons and quarks other than top are massless at tree level, we show that their masses may be induced by loops involving the top quark. As a result, the generic features of the fermion mass spectrum arise from combinations of loop factors. Explicitly, we construct a renormalizable model involving a few new particles, which leads to 1-loop bottom and tau masses, a 2-loop charm mass, 3-loop muon and strange masses, and 4-loop masses for first generation fermions. This realistic pattern of masses does not require any symmetry to differentiate the three generations of fermions. The new particles may produce observable effects in future experiments searching for mu to e conversion in nuclei, rare meson decays, and other processes.Comment: 29 pages; Introduction expanded, references adde

    Two monopoles of one type and one of another

    Get PDF
    The metric on the moduli space of charge (2,1) SU(3) Bogomolny-Prasad-Sommerfield monopoles is calculated and investigated. The hyperKahler quotient construction is used to provide an alternative derivation of the metric. Various properties of the metric are derived using the hyperKahler quotient construction and the correspondence between BPS monopoles and rational maps. Several interesting limits of the metric are also considered.Comment: 48 pages, LaTeX, 2 figures. Typos corrected. Version in JHE

    Spatio-temporal variation in the structure of a deep water Posidonia oceanica meadow assessed using non-destructive techniques

    Get PDF
    The Malta-Comino Channel (Maltese islands, central Mediterranean), supports extensive meadows of the seagrass Posidonia oceanica that in some places extend to a depth of around 43 m, which is rare for this seagrass. To assess spatial and temporal variation in the state of the deeper parts of the P. oceanica meadow with time, data on the structural characteristics of the seagrass meadow at its lower bathymetric limit were collected during the summers of 2001, 2003 and 2004 from four stations (two stations within each of two sites) located at a similar depth, over a spatial extent of 500 m. Shoot density was estimated in situ, while data on plant architecture (number of leaves, mean leaf length, and epiphyte load) were successfully obtained using an underwater photographic technique that was specifically designed to avoid destructive sampling of the seagrass. Results indicated that P. oceanica shoot density was lower than that recorded from the same meadow during a study undertaken in 1995; the observed decrease was attributed to the activities of an offshore aquaculture farm that operated during the period 1995–2000 in the vicinity of the meadow. ANOVA indicated significant spatial and temporal variations in meadow structural attributes at both sites during the 3-year study; for example, shoot density values increased overall with time at site A; a indication of potential recovery of the meadow following cessation of the aquaculture operations. Lower shoot density values recorded from site B (compared with site A) were attributed to higher epiphyte loads on the seagrass, relative to those at site A. The findings, which include new data on the structural characteristics of P. oceanica occurring at depths >40 m, are discussed with reference to the use of the nondestructive photographic technique to monitor the state of health of deep water seagrass meadows.peer-reviewe

    Collapse of the quantum correlation hierarchy links entropic uncertainty to entanglement creation

    Full text link
    Quantum correlations have fundamental and technological interest, and hence many measures have been introduced to quantify them. Some hierarchical orderings of these measures have been established, e.g., discord is bigger than entanglement, and we present a class of bipartite states, called premeasurement states, for which several of these hierarchies collapse to a single value. Because premeasurement states are the kind of states produced when a system interacts with a measurement device, the hierarchy collapse implies that the uncertainty of an observable is quantitatively connected to the quantum correlations (entanglement, discord, etc.) produced when that observable is measured. This fascinating connection between uncertainty and quantum correlations leads to a reinterpretation of entropic formulations of the uncertainty principle, so-called entropic uncertainty relations, including ones that allow for quantum memory. These relations can be thought of as lower-bounds on the entanglement created when incompatible observables are measured. Hence, we find that entanglement creation exhibits complementarity, a concept that should encourage exploration into "entanglement complementarity relations".Comment: 19 pages, 2 figures. Added Figure 1 and various remarks to improve clarity of presentatio
    • 

    corecore