32,379 research outputs found

    A New Photometric Model of the Galactic Bar using Red Clump Giants

    Full text link
    We present a study of the luminosity density distribution of the Galactic bar using number counts of red clump giants (RCGs) from the OGLE-III survey. The data were recently published by Nataf et al. (2013) for 9019 fields towards the bulge and have 2.94×1062.94\times 10^6 RC stars over a viewing area of 90.25 deg290.25 \,\textrm{deg}^2. The data include the number counts, mean distance modulus (μ\mu), dispersion in μ\mu and full error matrix, from which we fit the data with several tri-axial parametric models. We use the Markov Chain Monte Carlo (MCMC) method to explore the parameter space and find that the best-fit model is the E3E_3 model, with the distance to the GC is 8.13 kpc, the ratio of semi-major and semi-minor bar axis scale lengths in the Galactic plane x0,y0x_{0},y_{0}, and vertical bar scale length z0z_0, is x0:y0:z0≈1.00:0.43:0.40x_0:y_0:z_0 \approx 1.00:0.43:0.40 (close to being prolate). The scale length of the stellar density profile along the bar's major axis is ∼\sim 0.67 kpc and has an angle of 29.4∘29.4^\circ, slightly larger than the value obtained from a similar study based on OGLE-II data. The number of estimated RC stars within the field of view is 2.78×1062.78 \times 10^6, which is systematically lower than the observed value. We subtract the smooth parametric model from the observed counts and find that the residuals are consistent with the presence of an X-shaped structure in the Galactic centre, the excess to the estimated mass content is ∼5.8\sim 5.8%. We estimate the total mass of the bar is ∼1.8×1010M⊙\sim 1.8 \times 10^{10} M_\odot. Our results can be used as a key ingredient to construct new density models of the Milky Way and will have implications on the predictions of the optical depth to gravitational microlensing and the patterns of hydrodynamical gas flow in the Milky Way.Comment: 15 pages, 6 figures, 4 tables. MNRAS accepte

    Mercury deposition in southern New Hampshire, 2006–2009

    Get PDF
    The atmospheric deposition of mercury (Hg) occurs via several mechanisms including wet, dry, and occult processes. In an effort to understand the atmospheric cycling and seasonal depositional characteristics of Hg, event-based wet deposition samples and reactive gaseous Hg (RGM) measurements were collected for approximately 3 years at Thompson Farm (TF), a near-coastal rural site in Durham, NH, part of the University of New Hampshire AIRMAP Observing Network. Total aqueous mercury exhibited seasonal patterns in Hg wet deposition at TF. The lowest Hg wet deposition was measured in the winter with an average total seasonal deposition of 1.56 μg m−2compared to the summer average of 4.71 μg m−2. Inter-annual differences in total wet deposition are generally linked with precipitation volume, with the greatest deposition occurring in the wettest year. Relationships between surface level RGM and Hg wet deposition were also investigated based on continuous RGM measurements at TF from November 2006 to September 2009. No correlations were observed between RGM mixing ratios and Hg wet deposition, however the ineffective scavenging of RGM during winter precipitation events was evidenced by the less frequent depletion of RGM below the detection level. Seasonal dry deposition of reactive gaseous Hg (RGM) was estimated using an order-of-magnitude approach. RGM mixing ratios and dry deposition estimates were greatest during the winter and spring. The seasonal ratios of Hg wet deposition to RGM dry deposition vary by up to a factor of 80

    Quantum Reciprocity Conjecture for the Non-Equilibrium Steady State

    Full text link
    By considering the lack of history dependence in the non-equilibrium steady state of a quantum system we are led to conjecture that in such a system, there is a set of quantum mechanical observables whose retarded response functions are insensitive to the arrow of time, and which consequently satisfy a quantum analog of the Onsager reciprocity relations. Systems which satisfy this conjecture can be described by an effective Free energy functional. We demonstrate that the conjecture holds in a resonant level model of a multi-lead quantum dot.Comment: References revised to take account of related work on Onsager reciprocity in mesoscopics by Christen, and in hydrodynamics by Mclennan, Dufty and Rub

    Calorimetric Evidence of Strong-Coupling Multiband Superconductivity in Fe(Te0.57Se0.43) Single Crystal

    Get PDF
    We have investigated the specific heat of optimally-doped iron chalcogenide superconductor Fe(Te0.57Se0.43) with a high-quality single crystal sample. The electronic specific heat Ce of this sample has been successfully separated from the phonon contribution using the specific heat of a non-superconducting sample (Fe0.90Cu0.10)(Te0.57Se0.43) as a reference. The normal state Sommerfeld coefficient gamma_n of the superconducting sample is found to be ~ 26.6 mJ/mol K^2, indicating intermediate electronic correlation. The temperature dependence of Ce in the superconducting state can be best fitted using a double-gap model with 2Delta_s(0)/kBTc = 3.92 and 2Delta_l(0)/kBTc = 5.84. The large gap magnitudes derived from fitting, as well as the large specific heat jump of Delta_Ce(Tc)/gamma_n*Tc ~ 2.11, indicate strong-coupling superconductivity. Furthermore, the magnetic field dependence of specific heat shows strong evidence for multiband superconductivity

    The Magnetized Disk-Halo Transition Region of M51

    Full text link
    An excellent laboratory for studying large scale magnetic fields is the grand de- sign face-on spiral galaxy M51. Due to wavelength-dependent Faraday depolarization, linearly polarized synchrotron emission at different radio frequencies gives a picture of the galaxy at different depths: Observations at L-band (1-2 GHz) probe the halo region while at C- and X- band (4-8 GHz) the linearly polarized emission probe the disk region of M51. We present new observations of M51 using the Karl G. Jansky Very Large Array (VLA) at S-band (2-4 GHz), where previously no polarization observations existed, to shed new light on the transition region between the disk and the halo. We discuss a model of the depolarization of synchrotron radiation in a multilayer magneto-ionic medium and compare the model predictions to the multi-frequency polarization data of M51 between 1-8GHz. The new S-band data are essential to distinguish between different models. Our study shows that the initial model parameters, i.e. the total reg- ular and turbulent magnetic field strengths in the disk and halo of M51, need to be adjusted to successfully fit the models to the data.Comment: 4 Pages, 3 Figures, Conference Proceeding to IAU Focus Meeting 8: New Insights in Extragalactic Magnetic Field

    Electronic structure and Magnetism in BaMn2_2As2_2 and BaMn2_2Sb2_2

    Full text link
    We study the properties of ThCr2_2Si2_2 structure BaMn2_2As2_2 and BaMn2_2Sb2_2 using density functional calculations of the electronic and magnetic as well experimental measurements on single crystal samples of BaMn2_2As2_2. These materials are local moment magnets with moderate band gap antiferromagnetic semiconducting ground states. The electronic structures show substantial Mn - pnictogen hybridization, which stabilizes an intermediate spin configuration for the nominally d5d^5 Mn. The results are discussed in the context of possible thermoelectric applications and the relationship with the corresponding iron / cobalt / nickel compounds Ba(Fe,Co,Ni)2_2As2_2
    • …
    corecore