33,484 research outputs found
A New Photometric Model of the Galactic Bar using Red Clump Giants
We present a study of the luminosity density distribution of the Galactic bar
using number counts of red clump giants (RCGs) from the OGLE-III survey. The
data were recently published by Nataf et al. (2013) for 9019 fields towards the
bulge and have RC stars over a viewing area of . The data include the number counts, mean distance modulus
(), dispersion in and full error matrix, from which we fit the data
with several tri-axial parametric models. We use the Markov Chain Monte Carlo
(MCMC) method to explore the parameter space and find that the best-fit model
is the model, with the distance to the GC is 8.13 kpc, the ratio of
semi-major and semi-minor bar axis scale lengths in the Galactic plane
, and vertical bar scale length , is (close to being prolate). The scale length of the stellar
density profile along the bar's major axis is 0.67 kpc and has an angle
of , slightly larger than the value obtained from a similar study
based on OGLE-II data. The number of estimated RC stars within the field of
view is , which is systematically lower than the observed
value. We subtract the smooth parametric model from the observed counts and
find that the residuals are consistent with the presence of an X-shaped
structure in the Galactic centre, the excess to the estimated mass content is
. We estimate the total mass of the bar is . Our results can be used as a key ingredient to construct new density
models of the Milky Way and will have implications on the predictions of the
optical depth to gravitational microlensing and the patterns of hydrodynamical
gas flow in the Milky Way.Comment: 15 pages, 6 figures, 4 tables. MNRAS accepte
Mercury deposition in southern New Hampshire, 2006–2009
The atmospheric deposition of mercury (Hg) occurs via several mechanisms including wet, dry, and occult processes. In an effort to understand the atmospheric cycling and seasonal depositional characteristics of Hg, event-based wet deposition samples and reactive gaseous Hg (RGM) measurements were collected for approximately 3 years at Thompson Farm (TF), a near-coastal rural site in Durham, NH, part of the University of New Hampshire AIRMAP Observing Network. Total aqueous mercury exhibited seasonal patterns in Hg wet deposition at TF. The lowest Hg wet deposition was measured in the winter with an average total seasonal deposition of 1.56 μg m−2compared to the summer average of 4.71 μg m−2. Inter-annual differences in total wet deposition are generally linked with precipitation volume, with the greatest deposition occurring in the wettest year. Relationships between surface level RGM and Hg wet deposition were also investigated based on continuous RGM measurements at TF from November 2006 to September 2009. No correlations were observed between RGM mixing ratios and Hg wet deposition, however the ineffective scavenging of RGM during winter precipitation events was evidenced by the less frequent depletion of RGM below the detection level. Seasonal dry deposition of reactive gaseous Hg (RGM) was estimated using an order-of-magnitude approach. RGM mixing ratios and dry deposition estimates were greatest during the winter and spring. The seasonal ratios of Hg wet deposition to RGM dry deposition vary by up to a factor of 80
Quantum Reciprocity Conjecture for the Non-Equilibrium Steady State
By considering the lack of history dependence in the non-equilibrium steady
state of a quantum system we are led to conjecture that in such a system, there
is a set of quantum mechanical observables whose retarded response functions
are insensitive to the arrow of time, and which consequently satisfy a quantum
analog of the Onsager reciprocity relations. Systems which satisfy this
conjecture can be described by an effective Free energy functional. We
demonstrate that the conjecture holds in a resonant level model of a multi-lead
quantum dot.Comment: References revised to take account of related work on Onsager
reciprocity in mesoscopics by Christen, and in hydrodynamics by Mclennan,
Dufty and Rub
Calorimetric Evidence of Strong-Coupling Multiband Superconductivity in Fe(Te0.57Se0.43) Single Crystal
We have investigated the specific heat of optimally-doped iron chalcogenide
superconductor Fe(Te0.57Se0.43) with a high-quality single crystal sample. The
electronic specific heat Ce of this sample has been successfully separated from
the phonon contribution using the specific heat of a non-superconducting sample
(Fe0.90Cu0.10)(Te0.57Se0.43) as a reference. The normal state Sommerfeld
coefficient gamma_n of the superconducting sample is found to be ~ 26.6 mJ/mol
K^2, indicating intermediate electronic correlation. The temperature dependence
of Ce in the superconducting state can be best fitted using a double-gap model
with 2Delta_s(0)/kBTc = 3.92 and 2Delta_l(0)/kBTc = 5.84. The large gap
magnitudes derived from fitting, as well as the large specific heat jump of
Delta_Ce(Tc)/gamma_n*Tc ~ 2.11, indicate strong-coupling superconductivity.
Furthermore, the magnetic field dependence of specific heat shows strong
evidence for multiband superconductivity
The Magnetized Disk-Halo Transition Region of M51
An excellent laboratory for studying large scale magnetic fields is the grand
de- sign face-on spiral galaxy M51. Due to wavelength-dependent Faraday
depolarization, linearly polarized synchrotron emission at different radio
frequencies gives a picture of the galaxy at different depths: Observations at
L-band (1-2 GHz) probe the halo region while at C- and X- band (4-8 GHz) the
linearly polarized emission probe the disk region of M51. We present new
observations of M51 using the Karl G. Jansky Very Large Array (VLA) at S-band
(2-4 GHz), where previously no polarization observations existed, to shed new
light on the transition region between the disk and the halo. We discuss a
model of the depolarization of synchrotron radiation in a multilayer
magneto-ionic medium and compare the model predictions to the multi-frequency
polarization data of M51 between 1-8GHz. The new S-band data are essential to
distinguish between different models. Our study shows that the initial model
parameters, i.e. the total reg- ular and turbulent magnetic field strengths in
the disk and halo of M51, need to be adjusted to successfully fit the models to
the data.Comment: 4 Pages, 3 Figures, Conference Proceeding to IAU Focus Meeting 8: New
Insights in Extragalactic Magnetic Field
Electronic structure and Magnetism in BaMnAs and BaMnSb
We study the properties of ThCrSi structure BaMnAs and
BaMnSb using density functional calculations of the electronic and
magnetic as well experimental measurements on single crystal samples of
BaMnAs. These materials are local moment magnets with moderate band gap
antiferromagnetic semiconducting ground states. The electronic structures show
substantial Mn - pnictogen hybridization, which stabilizes an intermediate spin
configuration for the nominally Mn. The results are discussed in the
context of possible thermoelectric applications and the relationship with the
corresponding iron / cobalt / nickel compounds Ba(Fe,Co,Ni)As
- …