36 research outputs found

    PRECIPITATION STRENGTHENING PRODUCED BY THE FORMATION IN FERRITE OF Nb CARBIDES

    Get PDF
    A Nb microalloyed steel has been thermomechanically processed at laboratory through the use of plane straincompression sequences followed by simulated coiling. Tensile samples have been machined from the obtainedspecimens in order to investigate the effect of different variables: recrystallisation or accumulated strain beforetransformation, holding in austenite and coiling temperature on the final mechanical behaviour. Transmissionelectron microscopy observation of the precipitates has been carried out after coiling at different temperatures.It has been shown that when Nb remains in solution in austenite after hot deformation, it can precipitate inferrite, leading to an important strengthening effect which is directly related to the concentration of Nb insolution before transformation and coiling temperature

    Evolution of microstructure and crystallographic texture during dissimilar friction stir welding of duplex stainless steel to low carbon-manganese structural steel

    Get PDF
    Electron backscattered diffraction (EBSD) was used to analyze the evolution of microstructure and crystallographic texture during friction stir welding of dissimilar type 2205 duplex stainless steel (DSS) to type S275 low carbon-manganese structural steel. The results of microstructural analyses show that the temperature in the center of stirred zone reached temperatures between Ac 1 and Ac 3 during welding, resulting in a minor ferrite-to-austenite phase transformation in the S275 steel, and no changes in the fractions of ferrite and austenite in the DSS. Temperatures in the thermomechanically affected and shoulder-affected zones of both materials, in particular toward the root of the weld, did not exceed the Ac 1 of S275 steel. The shear generated by the friction between the material and the rotating probe occurred in austenitic/ferritic phase field of the S275 and DSS. In the former, the transformed austenite regions of the microstructure were transformed to acicular ferrite, on cooling, while the dual-phase austenitic/ferritic structure of the latter was retained. Studying the development of crystallographic textures with regard to shear flow lines generated by the probe tool showed the dominance of simple shear components across the whole weld in both materials. The ferrite texture in S275 steel was dominated by D 1, D 2, E, E¯ , and F, where the fraction of acicular ferrite formed on cooling showed a negligible deviation from the texture for the ideal shear texture components of bcc metals. The ferrite texture in DSS was dominated by D 1, D 2, I, I¯ , and F, and that of austenite was dominated by the A, A¯ , B, and B¯ of the ideal shear texture components for bcc and fcc metals, respectively. While D 1, D 2, and F components of the ideal shear texture are common between the ferrite in S275 steel and that of dual-phase DSS, the preferential partitioning of strain into the ferrite phase of DSS led to the development of I and I¯ components in DSS, as opposed to E and E¯ in the S275 steel. The formations of fine and ultrafine equiaxed grains were observed in different regions of both materials that are believed to be due to strain-induced continuous dynamic recrystallization (CDRX) in ferrite of both DSS and S275 steel, and discontinuous dynamic recrystallization (DDRX) in austenite phase of DSS

    Pearlite spheroidisation and microstructure refinement through heavy warm deformation of hot rolled 55VNb microalloyed steel

    Get PDF
    The microstructure evolution of 55VNb microalloyed steel during warm deformation via single pass uniaxial compression was researched, and the effect of deformation conditions on dynamic spheroidisation of cementite lamellae and ferrite conditioning for a range of deformation temperatures (600 °C to 700 °C) and strain rates (1 to 10 s−1) analysed. Cementite lamellae appear to subdivide irrespective of deformation temperature with the ferrite phase penetrating the pattern formed by the cementite crystallites, in turn confirming that the dissolution of this phase during deformation is an important mechanism leading to the break-up of plates and subsequent globulisation. EBSD measurements allowed orientation gradients leading to the final subdivision of the cementite to be determined. Ferrite softening during heavy warm deformation is attributed to dynamic recovery and continuous dynamic recrystallisation, although the evolution of this phase depends, to a great extent, on the region subject to study, as confirmed by local EBSD studies. Misorientation profiles obtained in different regions of ferrite and pearlite enabled the different stages of the microstructural evolution to be monitored for each phase, this being developed via a variety of mechanisms under the same deformation conditions. Finally, the increase in low angle boundary density correlates with the Zenner–Hollomon parameter, and a linear relation between the density of low angle boundaries and steady-state stress estimated for pearlite and ferrite was found, indicating that new boundaries would have been formed dynamically during deformation. High angle boundary density also increases with deformation, although this is almost irrespective of the temperature and strain rate applied

    Electron microscopy study of microtexture in Cu-Al-Ni shape memory alloys processed by powder metallurgy

    No full text
    Cu-AI-Ni shape memory alloys processed by powder metallurgy show very good thermomechanical properties, being the mechanical behavior similar to the one observed in single crystals. In this paper we present the microstructural characterization of a sample elaborated by powder metallurgy in two different stages of the process: after being compacted by Hot Isostatic Pressing (HIP) and after compaction and hot rolling, in order to find the microscopic mechanisms responsible of their mechanical behavior. The characterization has been carried out by means of Scanning Electron Microscopy using Backscattered Electron Imaging (SEM-BSE) and Electron BackScattered Diffraction (EBSD), as well as Transmission Electron Microscopy (TEM)

    Substructure development and damage initiation in a carbide-free bainitic steel upon tensile test

    No full text
    Carbide-free bainitic (CFB) steels belong to the family of advanced high strength steels (AHSS) that are struggling to become part of the third-generation steels to be marketed for the automotive industry. The combined effects of the bainitic matrix and the retained austenite confers a significant strength with a remarkable ductility to these steels. However, CFB steels usually show much more complex microstructures that also contain MA (Martensite–Austenite) phase and auto-tempered martensite (ATM). These phases may compromise the ductility of CFB steels. The present work analyzes the substructure evolution during tensile tests in the necking zone, and deepens into the void and crack formation mechanisms and their relationship with the local microstructure. The combination of FEG-SEM imaging, EBSD, and X-ray diffraction has been necessary to characterize the substructure development and damage initiation. The bainite matrix has shown great ductility through the generation of high angle grain boundaries and/or large orientation gradients around voids, which are usually found close to the bainite and MA/auto-tempered martensite interfaces or fragmenting the MA phase. Special attention has been paid to the stability of the retained austenite (RA) during the test, which may eventually be transformed into martensite (Transformation Induced Plasticity, or TRIP effect)
    corecore