189 research outputs found

    Radiation-induced interface phenomena: Decoration of high-energy density ion tracks

    Get PDF
    The effect of 20 MeV Cl4 + ions incident on Au-SiO2 and Ag-SiO2 interfaces was investigated using high-resolution transmission electron microscopy. Cross-sectional micrographs expose beam-induced gold interfacial transport and migration into the SiO2. No such migration was observed for silver films. The relevance of this phenomenon to the adhesion improvement found at corresponding irradiation doses is discussed

    An improved near-real-Time precipitation retrieval for Brazil

    Get PDF
    Observations from geostationary satellites can provide spatially continuous coverage at continental scales with high spatial and temporal resolution. Because of this, they are commonly used to complement ground-based precipitation measurements, whose coverage is often more limited. We present Hydronn, a neural-network-based, near-real-Time precipitation retrieval for Brazil based on visible and infrared (Vis-IR) observations from the Advanced Baseline Imager (ABI) on the Geostationary Operational Environmental Satellite 16 (GOES-16). The retrieval, which employs a convolutional neural network to perform Bayesian precipitation retrievals, was developed with the aims of (1) leveraging the full potential of latest-generation geostationary observations and (2) providing probabilistic precipitation estimates with well-calibrated uncertainties. The retrieval is trained using more than 3 years of collocations with combined radar and radiometer retrievals from the Global Precipitation Measurement (GPM) core observatory over South America. The accuracy of instantaneous precipitation estimates is assessed using a separate year of GPM combined retrievals and compared to retrievals from passive microwave (PMW) sensors and HYDRO, the Vis-IR retrieval that is currently in operational use at the Brazilian Institute for Space Research. Using all available channels of the ABI, Hydronn achieves accuracy close to that of state-of-The-Art PMW precipitation retrievals in both precipitation estimation and detection despite the lower information content of the Vis-IR observations. Hourly, daily, and monthly precipitation accumulations are evaluated against gauge measurements for June and December 2020 and compared to HYDRO, the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) Cloud Classification System (CCS), and the Integrated Multi-satellitE Retrievals for GPM (IMERG). Compared to HYDRO, Hydronn reduces the mean absolute error for hourly accumulations by 21% (22%) compared to HYDRO by 44% (41%) for the mean squared error (MSE) and increases the correlation by 138% (312%) for June (December) 2020. Compared to IMERG, the improvements correspond to 16% (14%), 12% (12%), and 20% (56%), respectively. Furthermore, we show that the probabilistic retrieval is well calibrated against gauge measurements when differences in the distributions of the training data and the gauge measurements are accounted for. Hydronn has the potential to significantly improve near-real-Time precipitation retrievals over Brazil. Furthermore, our results show that precipitation retrievals based on convolutional neural networks (CNNs) that leverage the full range of available observations from latest-generation geostationary satellites can provide instantaneous precipitation estimates with accuracy close to that of state-of-The-Art PMW retrievals. The high temporal resolution of the geostationary observation allows Hydronn to provide more accurate precipitation accumulations than any of the tested conventional precipitation retrievals. Hydronn thus clearly shows the potential of deep-learning-based precipitation retrievals to improve precipitation estimates from currently available satellite imagery

    Elastic and total reaction cross sections of oxygen isotopes in Glauber theory

    Full text link
    We systematically calculate the total reaction cross sections of oxygen isotopes, 15−24^{15-24}O, on a 12^{12}C target at high energies using the Glauber theory. The oxygen isotopes are described with Slater determinants generated from a phenomenological mean-field potential. The agreement between theory and experiment is generally good, but a sharp increase of the reaction cross sections from ^{21}O to ^{23}O remains unresolved. To examine the sensitivity of the diffraction pattern of elastic scattering to the nuclear surface, we study the differential elastic-scattering cross sections of proton-^{20,21,23}O at the incident energy of 300 MeV by calculating the full Glauber amplitude.Comment: 9 pages, 8 figure

    The calculation of total reaction cross sections induced by intermediate energy α\alpha-particles with BUU Model

    Full text link
    The Boltzmann-Uehling-Uhlenbeck (BUU) Model, which includes the Fermi motion, the mean field, individual nucleon-nucleon (N-N) interactions and the Pauli blocking effect etc., is used to calculate the total reaction cross section σR\sigma_R induced by α\alpha-particles on different targets in the incident energy range from 17.4 to 48.1 MeV/u. The calculation result can reproduce the experimental data well. The nucleus-nucleus interaction radius parameter r0r_0 was extracted from experimental σR\sigma_R. It is found that r0r_0 becomes constant with increasing the mass number of target.Comment: 4 pages, 4 fig

    Formula for proton-nucleus reaction cross section at intermediate energies and its application

    Full text link
    We construct a formula for proton-nucleus total reaction cross section as a function of the mass and neutron excess of the target nucleus and the proton incident energy. We deduce the dependence of the cross section on the mass number and the proton incident energy from a simple argument involving the proton optical depth within the framework of a black sphere approximation of nuclei, while we describe the neutron excess dependence by introducing the density derivative of the symmetry energy, L, on the basis of a radius formula constructed from macroscopic nuclear models. We find that the cross section formula can reproduce the energy dependence of the cross section measured for stable nuclei without introducing any adjustable energy dependent parameter. We finally discuss whether or not the reaction cross section is affected by an extremely low density tail of the neutron distribution for halo nuclei.Comment: 7 pages, 4 figures, added reference

    Predicting total reaction cross sections for nucleon-nucleus scattering

    Get PDF
    Nucleon total reaction and neutron total cross sections to 300 MeV for 12C and 208Pb, and for 65 MeV spanning the mass range, are predicted using coordinate space optical potentials formed by full folding of effective nucleon-nucleon interactions with realistic nuclear ground state densities. Good to excellent agreement is found with existing data.Comment: 10 pages, 4 figure
    • …
    corecore